首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对布朗葡萄藻分别在Chu13、Chu13×2和BG-11培养基中培养结果的比较,发现在气升式光照生物反应器中Chu13培养基最有利于布朗葡萄藻的生长和烃的合成,培养15d后,其生物量和粗烃质量分数分别为1.82g/L和58.7%;棕榈酸、油酸和亚麻酸是布朗葡萄藻的主要脂肪酸组成,Chu13培养获得的藻体不饱和脂肪酸比例最高。Chu13培养基中布朗葡萄藻代谢规律的研究表明:粗烃含量随着生物量的增加而逐渐增大,15d后粗烃产量达到最大值1.07g/L,不同生长周期烃的组成保持一致,布朗葡萄藻的烃主要由C33H56和C34H58组成;在布朗葡萄藻生长周期中,不饱和脂肪酸的比例显著上升,培养15d达到64%以上。  相似文献   

2.
L Song  JG Qin  S Su  J Xu  S Clarke  Y Shan 《PloS one》2012,7(7):e41459
The requirements of micronutrients for biomass and hydrocarbon production in Botryococcus braunii UTEX 572 were studied using response surface methodology. The concentrations of four micronutrients (iron, manganese, molybdenum, and nickel) were manipulated to achieve the best performance of B. braunii in laboratory conditions. The responses of algal biomass and hydrocarbon to the concentration variations of the four micronutrients were estimated by a second order quadratic regression model. Genetic algorithm calculations showed that the optimal level of micronutrients for algal biomass were 0.266 μM iron, 0.707 μM manganese, 0.624 μM molybdenum and 3.38 μM nickel. The maximum hydrocarbon content could be achieved when the culture media contained 10.43 μM iron, 6.53 μM manganese, 0.012 μM molybdenum and 1.73 μM nickel. The validation through an independent test in a photobioreactor suggests that the modified media with optimised concentrations of trace elements can increase algal biomass by 34.5% and hydrocarbon by 27.4%. This study indicates that micronutrients play significant roles in regulating algal growth and hydrocarbon production, and the response surface methodology can be used to optimise the composition of culture medium in algal culture.  相似文献   

3.
【背景】缺刻叶球藻(Lobosphaera incisa Reisigl)是一种单细胞球状绿藻,是已知花生四烯酸(Arachidonic acid,AA)含量最丰富的植物资源之一。然而目前其分类和命名仍然较为混乱。【目的】明确3株球状绿藻(SAG2468、SAG2043、H4301)的分类地位及在不同氮源(硝酸钠、尿素、碳酸氢铵、碳酸铵、硝酸铵、氯化铵和硫酸铵)和氮浓度(18mmol/L,3mmol/L)条件下油脂和AA积累的特性。【方法】通过分子系统学和形态观察的方法对3株球状绿藻进行分类界定;采用干重法、重量法和气相色谱分析的方法分别对其生物量、油脂含量、脂肪酸组成及AA含量进行测定。【结果】3株球状绿藻均隶属于叶球藻属(Lobosphaera),SAG2468原定名为缺刻缘绿藻(Parietochloris incisa),现修订为缺刻叶球藻(Lobosphaera incisa),与H4301为缺刻叶球藻的不同地理株系。SAG2043原定名为双隔蚁形藻(Myrmecia bisecta),现修订为双隔叶球藻(Lobosphaera bisecta)。3株微藻在高氮(18 mmol/L)和低氮(3 mmol/L)浓度的硝酸钠和尿素培养条件下均可良好生长,铵盐对藻细胞生长普遍有抑制作用,且浓度越高抑制作用越显著。低氮胁迫能显著促进油脂和AA的积累(P0.05),SAG2043在3 mmol/L硝酸钠条件下油脂和AA产率最高,分别为142.15mg/(L·d)和35.51mg/(L·d),明显高于另外2株微藻(P0.05)。此时SAG2043对应获得的生物量为4.9 g/L,油脂含量为43.49%,AA含量高达干重的10.86%,占总脂肪酸含量的31.75%。【结论】SAG2043是一株更具AA开发潜力的微藻。  相似文献   

4.
采用批次培养方法,在光照强度60、110mol/m2s下分别设置了7个不同的氮、磷浓度(N:0-3500g/L,P:15-775g/L),研究两株布朗葡萄藻(Botryococcus braunii)对氮、磷胁迫的敏感性差异,筛选高营养利用效率的优良藻株。结果表明:两株藻对氮磷营养胁迫的耐受性存在差异,B.braunii764株对氮胁迫具有较高耐受性,而B.braunii765株对磷胁迫具有较高耐受性。光照强度110mol/m2s,不同氮浓度下B.braunii764株其平均生长速率均显著高于其他各处理组;不同磷浓度下B.braunii765株其平均生长速率显著高于B.braunii764株。在试验设定的光照强度条件下,适当增加光照强度能够显著降低氮胁迫对布朗葡萄藻生长的抑制效应。在光照强度110mol/m2s下,氮浓度3500g/L时两株布朗葡萄藻平均生长速率与在正常Chu-10培养基条件下无显著差异。磷浓度775g/L时两株布朗葡萄藻的平均生长速率均显著低于正常Chu-10培养基条件,增加光照强度对磷胁迫下藻细胞的生长无显著作用。两株布朗葡萄藻在第2天时磷吸收与初始磷浓度呈正相关关系,氮吸收在3500g/L时出现饱和现象。布朗葡萄藻的生长更容易受到培养基中磷营养胁迫的影响。    相似文献   

5.
Fifteen strains of chlorophycean microalgae have been investigated with regard to their carotenoid profile. Lutein, beta-carotene and violaxanthin were present in virtually all of the strains, lutein, in general, being the most abundant carotenoid, whereas canthaxanthin and astaxanthin were found in some strains only. Chlorella fusca SAG 211-8b, Chlorococcum citriforme SAG 62.80, Muriellopsis sp., Neospongiococcum gelatinosum SAG B 64.80 and Chlorella zofingiensis CCAP 211/14 exhibited high lutein levels, the latter strain containing in addition substantial amounts of astaxanthin. Muriellopsis sp. was further characterized, since besides a high lutein content (up to 35 mg l(-1) culture), it had the highest growth rate (up to 0.17-0.23 h(-1)) and maximal standing cell density (up to 8 x 10(10) cells l(-1) culture). These levels of lutein are in the range of those reported for astaxanthin in Haematococcus and for beta-carotene in Dunaliella, microalgae of recognized interest for the production of these carotenoids. Lutein content of Muriellopsis sp. increased during the exponential phase of growth, with the highest value being recorded in the early stationary phase. Maximum levels of lutein in Muriellopsis sp. cultures were recorded at 20-40 mM NaNO3, 2-100 mM NaCl, 460 micromol photon m(-2) s(-1), pH 6.5 and 28 degrees C, conditions which were, in general, also optimal for cell growth. Growth-limiting conditions, such as pH values of 6 or 9 and a temperature of 33 degrees C, were found to stimulate carotenogenesis in Muriellopsis sp. This strain represents a potential source of lutein, a commercially interesting carotenoid of application in aquaculture and poultry farming, as well as in the prevention of cancer and diseases related to retinal degeneration.  相似文献   

6.
Growth of Botryococcus braunii (race 'A') and production of its constituents viz, hydrocarbon, carbohydrate, fatty acid, and carotenoids were influenced by different levels of salinity. Under salinity at 34 mM and 85 mM, 1.7-2.25-fold increase in the relative proportion of palmitic acid and two fold increase in oleic acid were observed. A twofold increase in carotenoid content was noticed at 85 mM salinity with lutein (75% of total carotenoid) as the major carotenoid followed by beta-carotene. The increase in biomass yields and changes in other constituents indicated the influence of salinity and the organism's adaptability to the tested levels of salinity (17 mM to 85 mM).  相似文献   

7.
A psychrotrophic strain of Arthrobacter agilis, isolated from Antarctic sea ice, grows from 5 degrees C to 40 degrees C and in culture media containing 0-10% (w/v) NaCl. Maximum growth rate occurred at 30-35 degrees C with a drastic decline as the cultivation temperatures diverged. Adaptation to extremes of low temperature may be partially attributed to the production of the C-50 carotenoid bacterioruberin, and its glycosylated derivatives. Lowering of the cultivation temperature resulted in a concomitant increase in carotenoid production, which may contribute to membrane stabilisation at low temperature. Maximum biomass accumulation occurred at 5-30 degrees C with a tenfold reduction at 40 degrees C. Changes in growth rates were minimal in culture media containing 0-2% (w/v) NaCl at 10 degrees C while a gradual decrease in growth rates occurred at higher salinity. Biomass accumulation at different salinity followed a trend similar to that observed with different cultivation temperatures. Maximum biomass accumulation was observed in culture media containing 0-5% (w/v) NaCl with a tenfold reduction at 10% (w/v) NaCl. Carotenoid production also decreased as salinity increased.  相似文献   

8.
Of various methods for lipid recovery in Botryococcus braunii UTEX 572, the most effective method was disruption of the cells with a bead-beater followed by extraction with chloroform/methanol (2:1, v/v). This gave a lipid content of 28.6% of dry wt. There was a significant relationship between in vivo fluorescence of cells stained with Nile Red and lipid content in B. braunii determined gravimetrically (r2 = 0.997). This suggested that the Nile Red staining as a rapid method was as good as the gravimetric method commonly used for lipid determination which requires toxic solvents and considerable time-consuming manipulations. © Rapid Science Ltd. 1998  相似文献   

9.
Batch cultures of the hydrocarbon-rich alga Botryococcus braunii, Kütz. (axenic strains, non-axenic strains, associations with selected microorganisms) were examined with regard to total biomass and hydrocarbons at the onset of the stationary phase. Pronounced variations, related to the origin of the strains and to growth conditions, were observed with axenic cultures. It also appeared that the presence of microorganisms is not essential for high hydrocarbon production. Nevertheless, numerous bacteria were shown to exert considerable influence, antagonistic or beneficial, on B. braunii growth yield and hydrocarbon production. Such effects were strongly dependent on the species involved and on culture conditions. The presence of various microorganisms can influence not only the quantity of hydrocarbons produced, but also their level in the algal biomass and their relative abundance. However, their chemical structure is not affected. Intricate relationships were observed in B. braunii-bacteria systems and numerous factors (including, in some cultures, large positive effects due to bacterially produced CO2) were implicated. Accordingly, specific associations should provide appropriate conditions for renewable hydrocarbon production via B. braunii large scale cultures.  相似文献   

10.
Detailed studies were carried out on the effects of nitrogen source, phosphate, sodium chloride, growth factors, precursors, CO2, temperature, initial pH, and inoculum size on biomass and eicosapentaenoic acid (EPA) production by Phaeodactylum tricornutum. The EPA content of total fatty acids increased with increasing concentrations of nitrate and urea. Sodium chloride was not required for growth or EPA production. While vitamins B1 and B12 did not affect growth significantly, EPA yield was increased by 65% by B12 supplementation. Maximum EPA production occurred when the air gassing supply was supplemented with 1% CO2. Optimum culture temperature and initial pH for EPA production were 21.5 to 23 degrees C and 7.6, respectively. EPA yields of up to 133 mg/liter of culture were observed. EPA constituted up to 30 to 40% of total fatty acids.  相似文献   

11.
Detailed studies were carried out on the effects of nitrogen source, phosphate, sodium chloride, growth factors, precursors, CO2, temperature, initial pH, and inoculum size on biomass and eicosapentaenoic acid (EPA) production by Phaeodactylum tricornutum. The EPA content of total fatty acids increased with increasing concentrations of nitrate and urea. Sodium chloride was not required for growth or EPA production. While vitamins B1 and B12 did not affect growth significantly, EPA yield was increased by 65% by B12 supplementation. Maximum EPA production occurred when the air gassing supply was supplemented with 1% CO2. Optimum culture temperature and initial pH for EPA production were 21.5 to 23 degrees C and 7.6, respectively. EPA yields of up to 133 mg/liter of culture were observed. EPA constituted up to 30 to 40% of total fatty acids.  相似文献   

12.
Six different strains of the green microalgae Botryococcus belonging to the A-race or B-race, accumulating alkadiene or botryococcene hydrocarbons, respectively, were compared for biomass and hydrocarbon productivities. Biomass productivity was assessed gravimetrically upon strain growth in the laboratory under defined conditions. Hydrocarbon productivities were measured by three different and independent experimental approaches, including density equilibrium of the intact cells and micro-colonies, spectrophotometric analysis of hydrocarbon extracts, and gravimetric quantitation of eluted hydrocarbons. All three hydrocarbon-quantitation methods yielded similar results for each of the strains examined. The B-race microalgae Botryococcus braunii var. Showa and Kawaguchi-1 constitutively accumulated botryococcene hydrocarbons equivalent to 30% and 20%, respectively, of their overall biomass. The A-race microalgae Botryococcus braunii, varieties Yamanaka, UTEX 2441 and UTEX LB572 constitutively accumulated alkadiene hydrocarbons ranging from 14% to 13% and 10% of their overall biomass, respectively. Botryococcus sudeticus (UTEX 2629), a morphologically different green microalga, had the lowest hydrocarbon accumulation, equal to about 3% of its overall biomass. Results validate the density equilibrium and spectrophotometric analysis methods in the quantitation of botryococcene-type hydrocarbons. These analytical advances will serve in the screening and selection of B. braunii and of other microalgae in efforts to identify those having a high hydrocarbon content for use in commercial applications.  相似文献   

13.
研究了布朗葡萄藻(Botryococcus braunii)764株和765株在3种培养基Chu10、Chu13×2和SE中的生长效应.结果表明:(1)B.braunii764在Chu10中的细胞密度、生物量、总脂含量和总烃含量均高于Chu13×2和SE;B.braunii765在Chu10中的细胞密度、生物量和总脂含量高于Chu13×2和SE,而总烃含量在Chu13×2中较高.(2)B.braunii764的总脂和总烃含量分别为19.4%、23.4%,显著高于B.braunii765.  相似文献   

14.
AIMS: To determine the effect of oxidative stress and exogenous ascorbic acid on sclerotial biomass and carotenoid yield of Penicillium sp. PT95. METHODS: In this experiment, high oxidative stress was applied by the inclusion of FeSO(4) in the growth medium and exposure to light. Low oxidative stress was applied by omitting iron from the growth medium and by incubation in the dark. Supplementation of exogenous ascorbic acid (as antioxidant) to the basal medium caused a concentration-dependent delay of sclerotial differentiation (up to 48 h), decrease of sclerotial biomass (up to 40%) and reduction of carotenoid yield (up to 91%). On the contrary, the exogenous ascorbic acid also caused a concentration-dependent decrease of lipid peroxidation in colonies of this fungus. CONCLUSIONS: Under high oxidative stress growth condition, the sclerotial biomass and carotenoid yield of PT95 strain in each plate culture reached 305 mg and 32.94 microg, which were 1.23 and 3.71 times higher, respectively, than those at low oxidative stress growth condition. These data prompted us to consider that in order to attain higher sclerotial biomass and pigment yield, the strain PT95 should be grown under high oxidative stress and in the absence of antioxidants. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest that strain PT95 may be used for solid-state fermentation of carotenoid production under high oxidative stress growth conditions.  相似文献   

15.
Lin ES  Chen YH 《Bioresource technology》2007,98(13):2511-2517
Submerged cultures were used to identify growth-limiting nutrients by Antrodia cinnamomea strains. The mycelial biomass and EPS production by A. cinnamomea BCRC 35396 were markedly higher than other A. cinnamomea strains. A relatively high C/N ratio was favorable for both the mycelial growth (5.41 g/l) and EPS production (0.55 g/l); the optimum ratio was 40. The glucose was available utilized preferentially for mycelial growth, rather than for EPS production. Flushing the culture medium with nitrogen had a stimulating effect on both mycelial growth and EPS production. In addition, peptone, yeast extract and malt extract appeared to be important and significant component for EPS production. Phosphate ion, magnesium ion and thiamine were probably not essential for mycelial growth. By optimizing the effects of additional nutrition, the results showed that 5% (w/v) glucose, 0.8% (w/v) peptone, 0.8% (w/v) yeast extract, 0.8% (w/v) malt extract, 0.03% (w/v) KH2PO4, 0.1% (w/v) MgSO4 .7H2O and 0.1% (w/v) thiamine could lead to the maximum production of EPS (1.36 g/l).  相似文献   

16.
为给微藻大规模培养生产生物燃料提供稳定可靠的种质资源,本研究以葡萄藻为研究对象,建立了一套葡萄藻快速高效冷冻保藏的方法.通过对不同冷冻保护剂二甲基亚砜(DMSO)、甲醇(MeOH)、乙二醇(EG)、丙二醇(PG)和甘油(Gly)的毒性测试和冷冻保藏效果的比较,结果表明在以6% MeOH作为冷冻保护剂的条件下葡萄藻的存活...  相似文献   

17.
以经过二次过滤的富营养化鱼塘养殖污水为培养液,添加外源的碳、氮、磷元索,研究了污水中不同的外源无机碳、总氮和总磷浓度对布朗葡萄藻(Botryococcus braunii)生物量、总脂和总烃含量的影响.结果表明:(1)以NaHCO3作为碳源,布朗葡萄藻的生物量和总脂含量在外源无机碳浓度为5~10 mg/L时最高,总烃含量在外源无机碳浓度为15mg/L时最高.(2)以KNO3作为氮源,布朗葡萄藻的生物量在总氮浓度为15mg/L时最高,总脂含量在总氮浓度为2mg/L时最高,总烃含量在总氮浓度为20mg/L时最高.(3)以KH2 PO4作为磷源,布朗葡萄藻生物量在总磷浓度为2mg/L时最高,总脂含量和总烃含量在总磷浓度为1.5 mng/L时最高.  相似文献   

18.
Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons and other chemicals. Hydrocarbons can constitute up to 75% of the dry mass of B. braunii. This review details the various facets of biotechnology of B. braunii, including its microbiology and physiology; production of hydrocarbons and other compounds by the alga; methods of culture; downstream recovery and processing of algal hydrocarbons; and cloning of the algal genes into other microorganisms. B. braunii converts simple inorganic compounds and sunlight to potential hydrocarbon fuels and feedstocks for the chemical industry. Microorganisms such as B. braunii can, in the long run, reduce our dependence on fossil fuels and because of this B. braunii continues to attract much attention.  相似文献   

19.
Specific growth rates and carotenoid contents of three Antarctic and tropical strains of cyanobacteria viz. Anabaena sp., Phormidium sp. and Nostoc sp. were compared in batch and mass cultures to assess bio-potential of Antarctic strains for cost-effective carotenoid production. Antarctic strains though exhibited slightly lower specific growth rates, but contained higher carotenoid contents (per unit dry wt.), than tropical strains. Modification of normal composition of BG-11 culture medium, by altering nitrogen and carbon sources resulted in 25-38% increase in carotenoid content in both types of strains. Mass-culture in indoor and semi-outdoor bio-reactors resulted in 39-113% higher carotenoid content in Antarctic strains, compared to their respective tropical strains. The observations suggest that Antarctic cyanobacteria may have potential as superior strains for maximizing the yield of carotenoids.  相似文献   

20.
In order to see the effect of CO(2) inhibition resulting from the use of pure oxygen, we carried out a comparative fed-batch culture study of polyhydroxybutyric acid (PHB) production by Ralstonia eutropha using air and pure oxygen in 5-L, 30-L, and 300-L fermentors. The final PHB concentrations obtained with pure O(2) were 138.7 g/L in the 5-L fermentor and 131.3 g/L in the 30-L fermentor, which increased 2.9 and 6.2 times, respectively, as compared to those obtained with air. In the 300-L fermentor, the fed-batch culture with air yielded only 8.4 g/L PHB. However, the maximal CO(2) concentrations in the 5-L fermentor increased significantly from 4.1% (air) to 15.0% (pure O(2)), while it was only 1.6% in the 30-L fermentor with air, but reached 14.2% in the case of pure O(2). We used two different experimental methods for evaluating CO(2) inhibition: CO(2) pulse injection and autogenous CO(2) methods. A 10 or 22% (v/v) CO(2) pulse with a duration of 3 or 6 h was introduced in a pure-oxygen culture of R. eutropha to investigate how CO(2) affects the synthesis of biomass and PHB. CO(2) inhibited the cell growth and PHB synthesis significantly. The inhibitory effect became stronger with the increase of the CO(2) concentration and pulse duration. The new proposed autogenous CO(2) method makes it possible to place microbial cells under different CO(2) level environments by varying the gas flow rate. Introduction of O(2) gas at a low flow rate of 0.42 vvm resulted in an increase of CO(2) concentration to 30.2% in the exit gas. The final PHB of 97.2 g/L was obtained, which corresponded to 70% of the PHB production at 1.0 vvm O(2) flow rate. This new method measures the inhibitory effect of CO(2) produced autogenously by cells through the entire fermentation process and can avoid the overestimation of CO(2) inhibition without introducing artificial CO(2) into the fermentor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号