首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial Maintenance: A Critical Review on Its Quantification   总被引:1,自引:0,他引:1  
Microbial maintenance is an important concept in microbiology. Its quantification, however, is a subject of continuous debate, which seems to be caused by (1) its definition, which includes nongrowth components other than maintenance; (2) the existence of partly overlapping concepts; (3) the evolution of variables as constants; and (4) the neglect of cell death in microbial dynamics. The two historically most important parameters describing maintenance, the specific maintenance rate and the maintenance coefficient, are based on partly different nongrowth components. There is thus no constant relation between these parameters and previous equations on this subject are wrong. In addition, the partial overlap between these parameters does not allow the use of a simple combination of these parameters. This also applies for combinations of a threshold concentration with one of the other estimates of maintenance. Maintenance estimates should ideally explicitly describe each nongrowth component. A conceptual model is introduced that describes their relative importance and reconciles the various concepts and definitions. The sensitivity of maintenance on underlying components was analyzed and indicated that overall maintenance depends nonlinearly on relative death rates, relative growth rates, growth yield, and endogenous metabolism. This quantitative sensitivity analysis explains the felt need to develop growth-dependent adaptations of existing maintenance parameters, and indicates the importance of distinguishing the various nongrowth components. Future experiments should verify the sensitivity of maintenance components under cellular and environmental conditions.  相似文献   

2.

Background

Metagenomics is a relatively new but fast growing field within environmental biology and medical sciences. It enables researchers to understand the diversity of microbes, their functions, cooperation, and evolution in a particular ecosystem. Traditional methods in genomics and microbiology are not efficient in capturing the structure of the microbial community in an environment. Nowadays, high-throughput next-generation sequencing technologies are powerfully driving the metagenomic studies. However, there is an urgent need to develop efficient statistical methods and computational algorithms to rapidly analyze the massive metagenomic short sequencing data and to accurately detect the features/functions present in the microbial community. Although several issues about functions of metagenomes at pathways or subsystems level have been investigated, there is a lack of studies focusing on functional analysis at a low level of a hierarchical functional tree, such as SEED subsystem tree.

Results

A two-step statistical procedure (metaFunction) is proposed to detect all possible functional roles at the low level from a metagenomic sample/community. In the first step a statistical mixture model is proposed at the base of gene codons to estimate the abundances for the candidate functional roles, with sequencing error being considered. As a gene could be involved in multiple biological processes the functional assignment is therefore adjusted by utilizing an error distribution in the second step. The performance of the proposed procedure is evaluated through comprehensive simulation studies. Compared with other existing methods in metagenomic functional analysis the new approach is more accurate in assigning reads to functional roles, and therefore at more general levels. The method is also employed to analyze two real data sets.

Conclusions

metaFunction is a powerful tool in accurate profiling functions in a metagenomic sample.  相似文献   

3.
Recovery of high quality PCR-amplifiable DNA has been the general minimal requirement for DNA extraction methods for bulk molecular analysis. However, modern high through-put community profiling technologies are more sensitive to representativeness and reproducibility of DNA extraction method. Here, we assess the impact of three DNA extraction methods (with different levels of extraction harshness) for assessing hindgut microbiomes from pigs fed with different diets (with different physical properties). DNA extraction from each sample was performed in three technical replicates for each extraction method and sequenced by 16S rRNA amplicon sequencing. Host was the primary driver of molecular sequencing outcomes, particularly on samples analysed by wheat based diets, but higher variability, with one failed extraction occurred on samples from a barley fed pig. Based on these results, an effective method will enable reproducible and quality outcomes on a range of samples, whereas an ineffective method will fail to generate extract, but host (rather than extraction method) remains the primary factor.  相似文献   

4.
5.
6.
The phenotypic and genotypic adaptation of a freshwater sedimentary microbial community to elevated (22 to 217 μg g [dry weight] of sediment−1) levels of polycyclic aromatic hydrocarbons (PAHs) was determined by using an integrated biomolecular approach. Central to the approach was the use of phospholipid fatty acid (PLFA) profiles to characterize the microbial community structure and nucleic acid analysis to quantify the frequency of degradative genes. The study site was the Little Scioto River, a highly impacted, channelized riverine system located in central Ohio. This study site is a unique lotic system, with all sampling stations having similar flow and sediment characteristics both upstream and downstream from the source of contamination. These characteristics allowed for the specific analysis of PAH impact on the microbial community. PAH concentrations in impacted sediments ranged from 22 to 217 μg g (dry weight) of sediment−1, while PAH concentrations in ambient sediments ranged from below detection levels to 1.5 μg g (dry weight) of sediment−1. Total microbial biomass measured by phospholipid phosphate (PLP) analysis ranged from 95 to 345 nmol of PLP g (dry weight) of sediment−1. Nucleic acid analysis showed the presence of PAH-degradative genes at all sites, although observed frequencies were typically higher at contaminated sites. Principal component analysis of PLFA profiles indicated that moderate to high PAH concentrations altered microbial community structure and that seasonal changes were comparable in magnitude to the effects of PAH pollution. These data indicate that this community responded to PAH contamination at both the phenotypic and the genotypic level.  相似文献   

7.
8.
9.
10.
Protozoa are key components of a wide range of ecosystems, but ecological models that incorporate these microbes often suffer from poor parameterisation, specifically of top-level predator loss rates. We (1) suggest that top-level predator mortality is prey-dependent, (2) provide a novel approach to assess this response, and (3) illustrate the ecological relevance of these findings. Ciliates, Paramecium caudatum (prey) and Didinium nasutum (predator), were used to evaluate predator mortality at varying prey levels. To assess mortality, multiple (>100) predators were individually examined (in 2-ml wells), daily (for 3 days), between 0 and 120 preys ml−1. Data were used to determine non-linear mortality and growth responses over a range of prey abundances. The responses, plus literature data were then used to parameterise a predator–prey model, based on the Rosenzweig–MacArthur structure. The model assessed the impact of variable and three levels of constant (high, average and low) mortality rates on P. caudatum–D. nasutum population dynamics. Our method to determine variable mortality rate revealed a strong concave decline in mortality with increasing prey abundance. The model indicated: (1) high- and low-constant mortality rates yielded dynamics that deviate substantially from those obtained from a variable rate; (2) average mortality rate superficially produced dynamics similar to the variable rate, but there were differences in the period of predator–prey cycles, and the lowest abundance of prey and predators (by ~2 orders of magnitude). The differences between incorporating variable and constant mortality rate indicate that including a variable rate could substantially improve microbial-based ecological models.  相似文献   

11.
Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.  相似文献   

12.
Industrial units, manufacturing dyes, chemicals, solvents, and xenobiotic compounds, produce liquid and solid wastes, which upon conventional treatment are released in the nearby environment and thus are the major cause of pollution. Soil collected from contaminated Kharicut Canal bank (N 22°57.878′; E 072°38.478′), Ahmedabad, Gujarat, India was used for metagenomic DNA preparation to study the capabilities of intrinsic microbial community in dealing with xenobiotics. Sequencing of metagenomic DNA on the Genome Sequencer FLX System using titanium chemistry resulted in 409,782 reads accounting for 133,529,997 bases of sequence information. Taxonomic analyses and gene annotations were carried out using the bioinformatics platform Sequence Analysis and Management System for Metagenomic Datasets. Taxonomic profiling was carried out by three different complementary approaches: (a) 16S rDNA, (b) environmental gene tags, and (c) lowest common ancestor. The most abundant phylum and genus were found to be “Proteobacteria” and “Pseudomonas,” respectively. Metagenome reads were mapped on sequenced microbial genomes and the highest numbers of reads were allocated to Pseudomonas stutzeri A1501. Assignment of obtained metagenome reads to Gene Ontology terms, Clusters of Orthologous Groups of protein categories, protein family numbers, and Kyoto Encyclopedia of Genes and Genomes hits revealed genomic potential of indigenous microbial community. In total, 157,024 reads corresponded to 37,028 different KEGG hits, and amongst them, 11,574 reads corresponded to 131 different enzymes potentially involved in xenobiotic biodegradation. These enzymes were mapped on biodegradation pathways of xenobiotics to elucidate their roles in possible catalytic reactions. Consequently, information obtained from the present study will act as a baseline which, subsequently along with other “-omic” studies, will help in designing future bioremediation strategies in effluent treatment plants and environmental clean-up projects.  相似文献   

13.
14.
15.
紫杉醇是临床效果最好的抗癌药物之一。其主要来源于红豆杉提取、全合成与半合成。利用微生物转化其副产物能提高红豆杉利用率。转化反应过程涉及紫杉烷水解、酰化、羟基化、脱氢、差向异构化等。本文概述了现阶段紫杉烷各类型微生物转化研究,为进一步深入研究微生物转化提供科学基础。  相似文献   

16.
17.
Microbial Interactions within a Cheese Microbial Community   总被引:1,自引:1,他引:1       下载免费PDF全文
The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified.  相似文献   

18.
Abstract

Bisphosphonates (BPs) are drugs commonly used in the treatment of various disease arising or affecting bone tissue. There is a standard use in bone neoplasia and metastasis, hormonal and developmental disorders as well as for compensation of adverse effects in several medical therapies. Many in-vivo and in-vitro studies have assessed the efficacy of this drug and its function in cellular scale. In this concern, BPs are described to inhibit the resorptive function of osteoclasts and to prevent apoptosis of osteoblasts and osteocytes. They can preserve the osteocytic network, reduce fracture rate, and increase the bone mineral content, which is therapeutically used. Connexin 43 (Cx43) is a crucial molecule for basal regulation of bone homeostasis, development, and differentiation. It is described for signal transduction in many physiological and pathological stimuli and recently to be involved in BP action.  相似文献   

19.
Traumatic fibromyositis is not an inflammation; there is no fever, leukocytosis or increased sedimentation rate; electrical characteristics and serum enzyme levels are within normal limits, and there are no observable pathologic alterations, although they have been carefully searched for. Recent attempts to express the effects of muscular sprain or strain as a biochemical disturbance expressed in an unusual pattern of lactate dehydrogenase isoenzymes appear not only to be technically flawed but inconsistent with results of conventional enzyme studies on other muscle and interstitial inflammations. In the author''s view, “traumatic” fibromyositis is no more than a verbal construct arrived at by adding an adjectival modifier to the old terms for idiopathic rheumatic disorders. An examination of the evolution of the concept of traumatic fibromyositis shows that it lacks validity as a clinical diagnosis and ought to be abandoned.  相似文献   

20.
The leaves of seed plants evolved from a primitive shoot system and are generated as determinate dorsiventral appendages at the flanks of radial indeterminate shoots. The remarkable variation of leaves has remained a constant source of fascination, and their developmental versatility has provided an advantageous platform to study genetic regulation of subtle, and sometimes transient, morphological changes. Here, we describe how eudicot plants recruited conserved shoot meristematic factors to regulate growth of the basic simple leaf blade and how subsets of these factors are subsequently re-employed to promote and maintain further organogenic potential. By comparing tractable genetic programs of species with different leaf types and evaluating the pros and cons of phylogenetic experimental procedures, we suggest that simple and compound leaves, and, by the same token, leaflets and serrations, are regulated by distinct ontogenetic programs. Finally, florigen, in its capacity as a general growth regulator, is presented as a new upper-tier systemic modulator in the patterning of compound leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号