首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-high-density lipoprotein cholesterol and cardiovascular disease   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Non-HDL cholesterol was designated a secondary target of therapy in the recent Adult Treatment Panel III report. This paper reviews correlates of non-HDL cholesterol levels and summarizes the available data on non-HDL cholesterol as a predictor of cardiovascular events as well as data linking treatment-induced changes in non-HDL cholesterol to cardiovascular outcomes. RECENT FINDINGS: Non-HDL cholesterol levels in the population vary by age, sex, and race and are closely linked to measures of adiposity, especially visceral adiposity. Several reports in populations with and without cardiovascular disease have recently been published that document the prognostic utility of non-HDL cholesterol levels. Preliminary data are also available to suggest that pharmacologically induced changes in non-HDL cholesterol levels relate to prognosis. SUMMARY: Non-HDL cholesterol is a potent predictor of cardiovascular risk among a broad range of individuals with and without cardiovascular disease and is prognostic over a wide range of follow-up periods. The impact of pharmacologically induced changes in non-HDL cholesterol on cardiovascular outcomes is less clear and requires further study.  相似文献   

2.
Niacin in cardiovascular prevention: mechanisms, efficacy, and safety   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: This review describes niacin's mechanism of action, efficacy in cardiovascular prevention, and safety. RECENT FINDINGS: A G-protein-coupled receptor [GPR109A/HM74A, mouse PUMA-G (protein upregulated in macrophages by interferon-gamma)] was found to mediate the antilipolytic effect of niacin via inhibition of adenylyl cyclase in adipocytes. The same receptor in skin Langerhans cells mediates the common flushing side effect. The endogenous ligand for the receptor may be beta-hydroxybutyrate. Among nine controlled clinical trials using niacin, mostly combined with other drugs, statistically significant positive impact on clinical or anatomic cardiovascular end-points was found in seven, which represents a remarkably consistent record of benefit. Although niacin induces insulin resistance, deterioration of glycemic control in diabetes is usually minor, and there is no evidence of increased incidence of new onset diabetes. Hepatic toxicity is common with higher doses of sustained-release niacin but rare with immediate-release and extended-release niacin at doses up to 2000 mg/day. Extended-release and immediate-release niacin do not substantially potentiate myopathic effects when given in combination with statins. SUMMARY: Recently developed understanding of the mechanisms, efficacy, and safety of niacin, along with progress in reducing the chief side effect of flushing, should enhance the use of this valuable agent for cardiovascular prevention.  相似文献   

3.
4.
Protective role of magnesium in cardiovascular diseases: A review   总被引:9,自引:0,他引:9  
A considerable number of experimental, epidemiological and clinical studies are now available which point to an important role of Mg2+ in the etiology of cardiovascular pathology. In human subjects, hypomagnesemia is often associated with an imbalance of electrolytes such as Na+, K+ and Ca2+. Abnormal dietary deficiency of Mg2+ as well as abnormalities in Mg2+ metabolism play important roles in different types of heart diseases such as ischemic heart disease, congestive heart failure, sudden cardiac death, atheroscelerosis, a number of cardiac arrhythmias and ventricular complications in diabetes mellitus. Mg2+ deficiency results in progressive vasoconstriction of the coronary vessels leading to a marked reduction in oxygen and nutrient delivery to the cardiac myocytes.Numerous experimental and clinical data have suggested that Mg2+ deficiency can induce elevation of intracellular Ca2+ concentrations, formation of oxygen radicals, proinflammatory agents and growth factors and changes in membrane permeability and transport processes in cardiac cells. The opposing effects of Mg2+ and Ca2+ on myocardial contractility may be due to the competition between Mg2+ and Ca2+ for the same binding sites on key myocardial contractile proteins such as troponin C, myosin and actin.Stimulants, for example, catecholamines can evoke marked Mg2+ efflux which appears to be associated with a concomitant increase in the force of contraction of the heart. It has been suggested that Mg2+ efflux may be linked to the Ca2+ signalling pathway. Depletion of Mg2+ by alcohol in cardiac cells causes an increase in intracellular Ca2+, leading to coronary artery vasospasm, arrhythmias, ischemic damage and cardiac failure. Hypomagnesemia is commonly associated with hypokalemia and occurs in patients with hypertension or myocardial infarction as well as in chronic alcoholism.The inability of the senescent myocardium to respond to ischemic stress could be due to several reasons. Mg2+ supplemented K+ cardioplegia modulates Ca2+ accumulation and is directly involved in the mechanisms leading to enhanced post ischemic functional recovery in the aged myocardium following ischemia. While many of these mechanisms remain controversial and in some cases speculative, the beneficial effects related to consequences of Mg2+ supplementation are apparent. Further research are needed for the incorporation of these findings toward the development of novel myocardial protective role of Mg2+ to reduce morbidity and mortality of patients suffering from a variety of cardiac diseases.  相似文献   

5.
Endothelin-1 is a recently discovered peptide mainly released from endothelial cells. Hypoxia and ischemia as well as numerous factors such as angiotensin 11, thrombin and transforming growth factor 1 stimulate the fomation of the peptide. On the other hand the synthesis of endothelin is inhibited by nitric oxide and atrial natriuretic peptide via the formation of cyclic guanosine monophosphate. Released from endothelial cells endothelin-1 mediates transient vasodilation followed by a profound and longlasting vasoconstriction. Endothelin is also a mitogen for smooth muscle proliferation. Endothelins exert their biological effects via activation of specific receptors. Two different receptors have been cloned from mammalian tissues (ETA and ETB receptors). On vascular smooth muscle cells both receptors mediate contractions. Endothelial cells only express ETB receptors linked to the formation of nitric oxide and/or prostacyclin formation. Increased plasma concentrations of endothelin-1 have been described in a variety of diseases such as pulmonary hypertension, arteriosclerosis, renal failure, acute coronary syndromes, heart failure, migraine and vascular diseases.Recently an increasing number of endothelin receptor antagonists have been synthetized, which have been shown to inhibit endothelin-mediated vasoconstriction. Clinical studies are now ongoing to elucidate the pathophysiologic role of endothelin and the potential benefit of the blockade of the system in different disease states.  相似文献   

6.
High-density lipoprotein cholesterol (HDL-c) plays a crucial role in the concept of reverse cholesterol transport and has many other beneficial properties which may interfere with atherogenesis and plaque rupture. Low HDL-c levels are currently considered to be an important risk factor for the development of cardiovascular disease. However until recently no effective and safe treatment for powerfully increasing HDL-c selectively was available. This short overview describes possible new therapeutic approaches that may be able to raise HDL-c levels or improve HDL-c metabolism/reverse cholesterol transport. Today, the most important targets to be evaluated are inhibition of cholesteryl ester transfer protein (CETP) and increasing the HDL-c level by infusion of engineered HDL particles. Trials to prove clinical benefit of new HDL-c raising approaches are underway and may well be a new starting point for an optimised prevention and treatment of atherosclerotic cardiovascular disease.  相似文献   

7.
8.
Mineralocorticoid receptors (MRs) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease.  相似文献   

9.
The implication that cholesterol plays an essential role in the pathogenesis of Alzheimer’s disease (AD) is based on the 1993 finding that the presence of apolipoprotein E (apoE) allele ε4 is a strong risk factor for developing AD. Since apoE is a regulator of lipid metabolism, it is reasonable to assume that lipids such as cholesterol are involved in the pathogenesis of AD. Recent epidemiological and biochemical studies have strengthened this assumption by demonstrating the association between cholesterol and AD, and by proving that the cellular cholesterol level regulates synthesis of amyloid β-protein (Aβ). Yet several studies have demonstrated that oligomeric Aβ affects the cellular cholesterol level, which in turn has a variety of effects on AD-related pathologies, including modulation of tau phosphorylation, synapse formation and maintenance of its function, and the neurodegenerative process. All these findings suggest that the involvement of cholesterol in the pathogenesis of AD is dualistic—it is involved in Aβ generation and in the amyloid cascade, leading to disruption of synaptic plasticity, promotion of tau phosphorylation, and eventual neurodegeneration. This review article describes recent findings that may lead to the development of a strategy for AD prevention by decreasing the cellular cholesterol level, and also focuses on the impact of Aβ on cholesterol metabolism in AD and mild cognitive impairment (MCI), which may result in promotion of the amyloid cascade at later stages of the AD process.  相似文献   

10.
Accumulating evidence has indicated that intestinal microbiota is involved in the development of various human diseases, including cardiovascular diseases (CVDs). In the recent years, both human and animal experiments have revealed that alterations in the composition and function of intestinal flora, recognized as gut microflora dysbiosis, can accelerate the progression of CVDs. Moreover, intestinal flora metabolizes the diet ingested by the host into a series of metabolites, including trimethylamine N‐oxide, short chain fatty acids, secondary bile acid and indoxyl sulfate, which affects the host physiological processes by activation of numerous signalling pathways. The aim of this review was to summarize the role of gut microbiota in the pathogenesis of CVDs, including coronary artery disease, hypertension and heart failure, which may provide valuable insights into potential therapeutic strategies for CVD that involve interfering with the composition, function and metabolites of the intestinal flora.  相似文献   

11.
12.
13.
14.

Introduction  

Both cardiovascular disease and osteoporosis are important causes of morbidity and mortality in the elderly. The co-occurrence of cardiovascular disease and osteoporosis prompted us to review the evidence of an association between cardiovascular (CV) disease and osteoporosis and potential shared common pathophysiological mechanisms.  相似文献   

15.
Telomeres are noncoding functional DNA repeat sequences at the ends of chromosomes that decrease in length by a predictable amount at each cell division. When the telomeres become critically short, the cell is no longer able to replicate and enters cellular senescence. Recent work has shown that within individuals, telomere length tracks with cardiovascular health and aging and is also affected by growth variation, both prenatally and postnatally. Therefore telomere length can be a marker of both growth history (cell division) and tissue function (senescence). Relationships between early growth and later health have emerged as a research focus in the epidemiology of chronic diseases of aging, such as heart disease and diabetes. The "fetal origins" literature has demonstrated that hormonal and nutritional aspects of the intrauterine environment not only affect fetal growth but also can permanently alter the metabolic program of the individual. Smaller infants tend to have a higher risk of developing cardiovascular disease. Much less attention has been paid to possible genetic links between the processes of early growth and later disease. Our aim in this review is to summarize evidence for one such genetic mechanism, telomere attrition, that may underlie the fetal origins of cardiovascular disease and to discuss this mechanism in light of the evolution of senescence.  相似文献   

16.
Human cholesterol gallstone disease has been a frequent and serious problem. A number of animal models have been reviewed for comparative study of cholesterol lithogenesis. These models in general have involved (1) decreasing bile salt excretion, (2) increasing dietary cholesterol, or (3) inducing gallbladder infection or stasis.  相似文献   

17.
Antimicrobial peptides are natural peptide antibiotics, existing ubiquitously in both plant and animal kingdoms. They exhibit broad-spectrum antimicrobial activity and play an important role in host defense against invading microbes. Recently, these peptides have been shown to possess activities unrelated to direct microbial killing and be involved in the complex network of immune responses and inflammation. Thus, their role has now broadened beyond that of endogenous antibiotics. Because of their wide involvement in inflammatory response and the emerging role of inflammation in atherosclerosis, antimicrobial peptides have been proposed to represent an important link between inflammation and the pathogenesis of atherosclerotic cardiovascular diseases. This review highlights recent findings that support a role of these peptides in cardiovascular physiology and disease.  相似文献   

18.
Apolipoprotein E (ApoE) is an abundant plasma protein that interacts with low density lipoprotein receptors and other proteins, participating in the transport of cholesterol and lipids. Research has revealed many other roles for this multifunctional protein. ApoE is polymorphic and exists in three major isoforms: ApoE2, ApoE3 (the most common isoform) and ApoE4, which differ by only one amino acid, at positions 112 and 158. The altered binding to lipids and receptors by ApoE isoforms E2 and E4 results in an elevated risk for neurological, cerebrovascular and cardiovascular pathologies. Most notably, ApoE4 is associated with an elevated risk (relative to E3) for Alzheimer’s disease. The application of mass spectrometry for genotyping and also direct measurement of ApoE protein isoforms is a recent development and is well suited to high-throughput applications. The precise quantification of protein isoforms will allow better characterization of effects resulting from heterozygous APOE genotypes.  相似文献   

19.

Background

Experimental studies support an important role for endothelial nitric oxide synthase (eNOS) in the regulation of angiogenesis. In humans, a common polymorphism exists in the eNOS gene that results in the conversion of glutamate to aspartate for codon 298. In vitro and in vivo studies have suggested a decreased NOS activity in patients with the Asp298 variant. We hypothesized that a genetic-mediated decreased eNOS activity may limit collateral development in patients with chronic coronary occlusions.

Methods

We selected 291 consecutive patients who underwent coronary angiography and who had at least one chronic (>15 days) total coronary occlusion. Collateral development was graded angiographically using two different methods: the collateral flow grade and the recipient filling grade. Genomic DNA was extracted from white blood cells and genotyping was performed using previously published techniques.

Results

Collateral development was lower in patients carrying the Asp298 variant than in Glu-Glu homozygotes (collateral flow grade: 2.64 ± 0.08 and 2.89 ± 0.08, respectively, p = 0.04; recipient filling grade: 3.00 ± 0.08 and 3.24 ± 0.07, respectively, p = 0.04). By multivariable analysis, three variables were independently associated with the collateral flow grade: female gender, smoking, and the Asp298 variant (p = 0.03) while the Asp298 variant was the sole variable independently associated with the recipient filling grade (p = 0.03).

Conclusion

Collateral development is lower in patients with the Asp298 variant. This may be explained by the decreased NOS activity in patients with the Asp298 variant. Further studies will have to determine whether increasing eNOS activity in humans is associated with coronary collateral development.  相似文献   

20.
Lipid-modified proteins are classified based on the identity of the attached lipid, a post- or co-translational modification required for their biological function. At least five different lipid modifications of cysteines, glycines and other residues on the COOH- and NH2-terminal domains have been described. Cysteine residues may be modified by the addition of a 16-carbon saturated fatty acyl group by a labile thioester bond (palmitoylation) or by prenylation processes that catalyze the formation of thioether bond with mevalonate derived isoprenoids, farnesol and geranylgeraniol. The NH2-terminal glycine residues may undergo a quite distinct process involving the formation of an amide bond with a 14-carbon saturated acyl group (myristoylation), while glycine residues in the COOH-terminal may be covalently attached with a cholesterol moiety by an ester bond. Finally, cell surface proteins can be anchored to the membrane through the addition of glycosylphosphatidylinositol moiety. Several lines of evidence suggest that lipid-modified proteins are directly involved in different steps of the development of lesions of atherosclerosis, from leukocyte recruitment to plaque rupture, and their expression or lipid modification are likely altered during atherogenesis. This review will briefly summarize the different enzymatic pathways of lipid modification and propose a series of lipid-modified proteins that can be used as biomarkers for cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号