首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 50-kDa protein, which binds to the growth-regulated gene (2A9) product, calcyclin in a calcium-dependent manner, was purified from bovine lung. Partial amino acid sequencing of the protein revealed it to be the bovine equivalent of rabbit lung CAP-50 (calcyclin-associated protein, 50 kDa), which is a member of the annexin family and binds to calcyclin in a calcium-dependent manner. Specific polyclonal antibodies to bovine lung CAP-50 were prepared. Comparative studies between CAP-50 and synexin (annexin VII) on the immunoreactivity against anti-CAP-50 antibodies and the ability of binding to calcyclin revealed that CAP-50 was a distinct molecule from synexin. Using specific polyclonal antibodies to bovine lung CAP-50, tissue distribution and subcellular distribution of CAP-50 were investigated. In most rat tissues, except those in the central nervous systems and kidney, CAP-50 is expressed at a high or moderate level. Both studies by subcellular fractionation and by indirect immunofluorescence staining of the rat embryonic fibroblast cell line, 3Y1, revealed that CAP-50 mainly localized in nuclei. Moreover, between the cells at interphase and at mitotic phase, different distributions of CAP-50 were observed. That is, in the cells at interphase, CAP-50 seemed to localize throughout the nucleoplasm. On the other hand, in the cells during mitosis, CAP-50 was concentrated at the loop-like structure around the mitotic apparatus. CAP-50 was found in isolated 3Y1 nuclei lacking outer nuclear membranes, and approximately 50% of CAP-50 was extracted from the nuclei by chelating calcium. Thus, CAP-50, a unique annexin, localizes in nuclei.  相似文献   

2.
In this study we examined the effects of insulin on protein kinase C (PKC) activity in cultured fetal chick neurons. PKC activity, measured as 32P incorporation into histone H1 in the presence of calcium (500 microM), phosphatidylserine (100 micrograms/ml), and diolein (3.3 micrograms/ml) minus the incorporation in the presence of calcium alone, was detected in neuronal cytosolic (207 +/- 33 pmol/min/mg) and membrane (33 +/- 8 pmol/min/mg) fractions. Insulin added to intact neurons increased the activity of PKC in both cytosolic and membrane fractions by about 40%. Neurons preincubated with cycloheximide (10 micrograms/ml) 30 min prior to insulin treatment showed the same degree of stimulation of PKC activity by insulin. The activation of PKC was maximal within 5-10 min of insulin exposure and was sustained for at least 60 min. Insulin stimulated PKC in a dose-dependent manner, with a maximal response obtained at 100 ng/ml. Addition of phosphatidylserine and diolein to neuronal cell extracts resulted in the phosphorylation of four major cytosolic proteins (70, 57, 18, and 16 kDa) and one major membrane protein (75 kDa). Phosphorylation of all five proteins was increased 2-fold in extracts from insulin-treated neurons. Immunoblot analysis of whole cell extracts using antibodies against PKC-alpha, PKC-beta, PKC-gamma, PKC-delta, and PKC-epsilon revealed that cultured fetal chick neurons contained only one of these PKC isoforms, the epsilon-isoform. The enzyme was mostly cytosolic. Insulin had no effect on either the amount of distribution of PKC-epsilon in cultured neurons but induced a small change in the mobility of PKC-epsilon on sodium dodecyl sulfate-polyacrylamide gels. When assay conditions were designed to measure specifically the activity of PKC-epsilon, using a synthetic peptide substrate in the absence of calcium, activity was 50 +/- 12% higher in insulin-treated cells (p less than 0.005). PKC activity in control and insulin treated-neurons was almost completely inhibited when assays included a peptide identical to the pseudo-substrate binding site of PKC-epsilon. We conclude that PKC-epsilon is the major PKC isoform present in cultured fetal chick neurons. Insulin stimulates PKC-epsilon activity by a mechanism that does not involve translocation of the enzyme from cytosol to membrane.  相似文献   

3.
Abstract. To investigate the relationship between protein kinase C (PKC) and chondrogenesis, PKC activity was assayed in cultures of stage 23/24 chick limb bud mesenchymal cells under various conditions. PKC activities of cytosolic and particulate fractions were low in 1 day cultured cells. As chondrogenesis proceeds, cytosolic PKC activity increased more than twofold, while that of the particulate fraction increased only slightly. Three days' treatment of cultures with phorbol-12-myristate-13-acetate (PMA, 5 × 10−8 M ) inhibited chondrogenesis judged by the accumulation of Alcian blue bound to the extracellular matrix and depressed PKC activity in cytosolic fraction. When cells were grown for 3 days in control medium after 3 days' treatment with PMA, chondrogenesis resumed and PKC activity recovered to normal values. PKC activity in cultures plated at low density (2 × 106 cells/ml) where chondrogenesis is reduced was as low as that in 1 day cultured cells plated at high density (2 × 107 cells/ml) or that in PMA treated cells. On the other hand, staurosporine promoted chondrogenesis without affecting PKC activity. Furthermore, reversal of PMA's inhibitory effect on chondrogenesis by staurosporine was not accompanied by recovery of PKC activity. These data indicate that increases in PKC activity is closely related to chondrogenesis and that PMA inhibits chondrogenesis by depressing PKC. However, staurosporine's enhancing effect on chondrogenesis is not related to PKC activity.  相似文献   

4.
5.
Abstract: GSH, GSSG, vitamin E, and ascorbate were measured in 14-day cultures of chick astrocytes and neurons and compared with levels in the forebrains of chick embryos of comparable age. Activities of enzymes involved in GSH metabolism were also measured. These included -γ-glutamylcysteine synthetase, GSH synthetase, γ-glutamyl cyclotransferase, γ-glutamyltranspeptidase, glutathione transferase (GST), GSH peroxidase, and GSSG reductase. The concentration of lipid-soluble vitamin E in the cultured neurons was found to be comparable with that in the forebrain. On the other hand, the concentration of vitamin E in the astrocytes was significantly greater in the cultured astrocytes than in the neurons, suggesting that the astrocytes are able to accumulate exogenous vitamin E more extensively than neurons. The concentrations of major fatty acids were higher in the cell membranes of cultured neurons than those in the astrocytes. Ascorbate was not detected in cultured cells although the chick forebrains contained appreciable levels of this antioxidant. GSH, total glutathione (i.e., GSH and GSSG), and GST activity were much higher in cultured astrocytes than in neurons. γ-Glutamylcysteine synthetase activity was higher in the cultured astrocytes than in the cultured neurons. GSH reductase and GSH peroxidase activities were roughly comparable in cultured astrocytes and neurons. The high levels of GSH and GST in cultured astrocytes appears to reflect the situation in vivo. The data suggest that astrocytes are resistant to reactive oxygen species (and potentially toxic xenobiotics) and may play a protective role in the brain. Because enzymes of GSH metabolism are generally well represented in cultured astrocytes and neurons these cells may be ideally suited as probes for manipulating GSH levels in neural tissues in vitro. Cultured astrocytes and neurons should be amenable to the study of the effects of various metabolic insults on the GSH system. Such studies may provide insights into the design of therapeutic strategies to combat oxidative and xenobiotic stresses.  相似文献   

6.
In non-mammalian vertebrates, the pineal gland contains an endogenous circadian oscillator and serves as a photosensitive neuroendocrinal organ. To better understand the pineal phototransduction mechanism, we focused on the chicken putative blue-light photoreceptive molecule, Cryptochrome4 (cCRY4). Here we report the molecular cloning of pineal cCry4 cDNA, the in vivo expression of cCry4 mRNA, and the detection of cCRY4 protein. cCry4 is transcribed in a wide variety of chick tissues out of which the pineal gland and retina contain high levels of cCry4 mRNA. In the pineal gland, under 12 h light : 12 h dark cycles, the levels of both cCry4 mRNA and cCRY4 protein showed diurnal changes, and in cultured chick pineal cells, the cCry4 mRNA level was not only up-regulated by light but also controlled by circadian signals. Immunoblot analysis with a cCRY4-specific antibody detected cCRY4 in a soluble fraction of the pineal lysate. Immunocytochemistry revealed that cCRY4 was expressed in many parenchymal cells and a limited number of stromal cells. These cCRY4 features strikingly contrast with those of the chick pineal photoreceptor pinopsin, suggesting a possible temporal and/or spatial duplicity of the pineal photoreceptive system, the opsin- and CRY-based mechanisms.  相似文献   

7.
In primary cultured mouse epidermal cells, phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), induced changes in the phosphorylation levels of 10 proteins, termed KP-1 to 10, in two-dimensional PAGE. Seven of these proteins were phosphorylated and three were dephosphorylated. Similar changes were induced by other PKC activators, but not by inactive phorbol ester. Among these substrate proteins, phosphorylation of three proteins, i.e. KP-1 (pI 4.7/23,000 Mr), KP-2 (pI 4.7/20,700 Mr) and KP-10 (pI 4.7/25,000 Mr was markedly enhanced by PMA and inhibited by a potent PKC inhibitor staurosporine. In vitro phosphorylation studies and phosphoamino acid analysis, using these proteins as substrate and PKC preparations obtained from epidermal cell lysate, revealed that KP-1 and -2 were directly phosphorylated by Ca2+-, phospholipid-dependent protein kinase (conventional-type PKC; cPKC), but not by Ca2+-independent, phospholipid-dependent protein kinase (novel-type PKC; nPKC). On the other hand, KP-10 was mainly phosphorylated by nPKC in intact epidermal cells. These results indicate that cPKC and nPKC in epidermal cells have different substrate specificity for endogenous proteins and may induce different signal transduction.  相似文献   

8.
Rho GTPases direct actin rearrangements in response to a variety of extracellular signals. P190 RhoGAP (GTPase activating protein) is a potent Rho regulator that mediates integrin-dependent adhesion signaling in cultured cells. We have determined that p190 RhoGAP is specifically expressed at high levels throughout the developing nervous system. Mice lacking functional p190 RhoGAP exhibit several defects in neural development that are reminiscent of those described in mice lacking certain mediators of neural cell adhesion. The defects reflect aberrant tissue morphogenesis and include abnormalities in forebrain hemisphere fusion, ventricle shape, optic cup formation, neural tube closure, and layering of the cerebral cortex. In cells of the neural tube floor plate of p190 RhoGAP mutant mice, polymerized actin accumulates excessively, suggesting a role for p190 RhoGAP in the regulation of +Rho-mediated actin assembly within the neuroepithelium. Significantly, several of the observed tissue fusion defects seen in the mutant mice are also found in mice lacking MARCKS, the major substrate of protein kinase C (PKC), and we have found that p190 RhoGAP is also a PKC substrate in vivo. Upon either direct activation of PKC or in response to integrin engagement, p190 RhoGAP is rapidly translocated to regions of membrane ruffling, where it colocalizes with polymerized actin. Together, these results suggest that upon activation of neural adhesion molecules, the action of PKC and p190 RhoGAP leads to a modulation of Rho GTPase activity to direct several actin-dependent morphogenetic processes required for normal neural development.  相似文献   

9.
Adducin is a heteromeric protein with subunits containing a COOH-terminal myristoylated alanine-rich C kinase substrate (MARCKS)-related domain that caps and preferentially recruits spectrin to the fast-growing ends of actin filaments. The basic MARCKS-related domain, present in α, β, and γ adducin subunits, binds calmodulin and contains the major phosphorylation site for protein kinase C (PKC). This report presents the first evidence that phosphorylation of the MARCKS-related domain modifies in vitro and in vivo activities of adducin involving actin and spectrin, and we demonstrate that adducin is a prominent in vivo substrate for PKC or other phorbol 12-myristate 13-acetate (PMA)-activated kinases in multiple cell types, including neurons. PKC phosphorylation of native and recombinant adducin inhibited actin capping measured using pyrene-actin polymerization and abolished activity of adducin in recruiting spectrin to ends and sides of actin filaments. A polyclonal antibody specific to the phosphorylated state of the RTPS-serine, which is the major PKC phosphorylation site in the MARCKS-related domain, was used to evaluate phosphorylation of adducin in cells. Reactivity with phosphoadducin antibody in immunoblots increased twofold in rat hippocampal slices, eight- to ninefold in human embryonal kidney (HEK 293) cells, threefold in MDCK cells, and greater than 10-fold in human erythrocytes after treatments with PMA, but not with forskolin. Thus, the RTPS-serine of adducin is an in vivo phosphorylation site for PKC or other PMA-activated kinases but not for cAMP-dependent protein kinase in a variety of cell types. Physiological consequences of the two PKC phosphorylation sites in the MARCKS-related domain were investigated by stably transfecting MDCK cells with either wild-type or PKC-unphosphorylatable S716A/S726A mutant α adducin. The mutant α adducin was no longer concentrated at the cell membrane at sites of cell–cell contact, and instead it was distributed as a cytoplasmic punctate pattern. Moreover, the cells expressing the mutant α adducin exhibited increased levels of cytoplasmic spectrin, which was colocalized with the mutant α adducin in a punctate pattern. Immunofluorescence with the phosphoadducin-specific antibody revealed the RTPS-serine phosphorylation of adducin in postsynaptic areas in the developing rat hippocampus. High levels of the phosphoadducin were detected in the dendritic spines of cultured hippocampal neurons. Spectrin also was a component of dendritic spines, although at distinct sites from the ones containing phosphoadducin. These data demonstrate that adducin is a significant in vivo substrate for PKC or other PMA-activated kinases in a variety of cells, and that phosphorylation of adducin occurs in dendritic spines that are believed to respond to external signals by changes in morphology and reorganization of cytoskeletal structures.  相似文献   

10.
Inhibition of angiogenesis and telomerase activity with vitamin E compounds, especially for tocotrienol (T3), has been investigated. Nutrigenomic tools have been used for elucidating the bioactive mechanisms of T3. In the cell culture experiments, T3 reduced the vascular endothelial growth factor (VEGF)-stimulated tube formation by human umbilical vein endothelial cells (HUVEC). Among T3 isomers, delta-T3 appeared the highest activity. The T3 inhibited the new blood vessels formation on the growing chick embryo chorioallantoic membrane (CAM assay for an in vivo model of angiogenesis). In contrast, tocopherol did not. The findings suggested that the T3 has potential use for reducing angiogenic disorder. DNA chip analysis revealed that T3 specifically down-regulates the expression of VEGF receptor (VEGFR) in endothelial cells. It is well-known that VEGF regulates angiogenesis by binding to VEGFR. Therefore, T3 could block the intracellular signaling of VEGF via down-regulation of VEGFR, which resulted in the inhibition of angiogenesis. On the other hand, DNA chip analysis also revealed that T3 down-regulates the expression of protein kinase C (PKC) in the cultured HUVEC. Since PKC is involved with the control of telomerase activity, T3 has potential to act as anti-telomerase inhibitor via PKC inhibition. In this manner, DNA chip technology provides efficient access to genetic information regarding food function and its mechanism.  相似文献   

11.
Long-term functional plasticity in the nervous system can involve structural changes in terminal arborization and synaptic connections. To determine whether the differential expression of intrinsic neuronal determinants affects structural plasticity, we produced and analyzed transgenic mice overexpressing the cytosolic proteins cortical cytoskeleton–associated protein 23 (CAP-23) and growth-associated protein 43 (GAP-43) in adult neurons.

Like GAP-43, CAP-23 was downregulated in mouse motor nerves and neuromuscular junctions during the second postnatal week and reexpressed during regeneration. In transgenic mice, the expression of either protein in adult motoneurons induced spontaneous and greatly potentiated stimulus-induced nerve sprouting at the neuromuscular junction. This sprouting had transgene-specific features, with CAP-23 inducing longer, but less numerous sprouts than GAP-43. Crossing of the transgenic mice led to dramatic potentiation of the sprout-inducing activities of GAP-43 and CAP-23, indicating that these related proteins have complementary and synergistic activities. In addition to ultraterminal sprouting, substantial growth of synaptic structures was induced. Experiments with pre- and postsynaptic toxins revealed that in the presence of GAP-43 or CAP-23, sprouting was stimulated by a mechanism that responds to reduced transmitter release and may be independent of postsynaptic activation.

These results demonstrate the importance of intrinsic determinants in structural plasticity and provide an experimental approach to study its role in nervous system function.

  相似文献   

12.
Various proteins in the signal transduction pathways as well as those of viral origin have been shown to be myristoylated. Although the modification is often essential for the proper functioning of the modified protein, the mechanism by which the modification exerts its effects is still largely unknown. Brain-specific protein kinase C substrate, CAP-23/NAP-22, which is involved in the synaptogenesis and neuronal plasticity, binds calmodulin, but the protein lacks any canonical calmodulin-binding domain. In the present report, we show that CAP-23/NAP-22 isolated from rat brain is myristoylated and that the modification is directly involved in its interaction with calmodulin. Myristoylated and non-myristoylated recombinant proteins were produced in Escherichia coli, and their calmodulin-binding properties were examined. Only the former bound to calmodulin. Synthetic peptides based on the N-terminal sequence showed similar binding properties to calmodulin, only when they were myristoylated. The calmodulin-binding site narrowed down to the myristoyl moiety together with a nine-amino acid N-terminal basic domain. Phosphorylation of a single serine residue in the N-terminal domain (Ser5) by protein kinase C abolished the binding. Furthermore, phosphorylation of CAP-23/NAP-22 by protein kinase C was also found myristoylation-dependent, suggesting the importance of myristoylation in protein-protein interactions.  相似文献   

13.
Neurulation involves a complex coordination of cellular movements that are in great part based on the modulation of the actin cytoskeleton. MARCKS, an F‐actin‐binding protein and the major substrate for PKC, is necessary for gastrulation and neurulation morphogenetic movements in mice, frogs, and fish. We previously showed that this protein accumulates at the apical region of the closing neural plate in chick embryos, and here further explore its role in this process and how it is regulated by PKC phosphorylation. PKC activation by PMA caused extensive neural tube closure defects in cultured chick embryos, together with MARCKS phosphorylation and redistribution to the cytoplasm. This was concomitant with an evident disruption of neural plate cell polarity and extensive apical cell extrusion. This effect was not due to actomyosin hypercontractility, but it was reproduced upon MARCKS knockdown. Interestingly, the overexpression of a nonphosphorylatable form of MARCKS was able to revert the cellular defects observed in the neural plate after PKC activation. Altogether, these results suggest that MARCKS function during neurulation would be to maintain neuroepithelial polarity through the stabilization of subapical F‐actin, a function that appears to be counteracted by PKC activation.  相似文献   

14.
Recent studies from this laboratory have identified novel cytoskeletal proteins that are phosphorylated on tyrosine in vivo in Rous sarcoma virus-transformed chick fibroblasts (Glenney, J. R., Jr., and Zokas, L. (1989) J. Cell Biol. 108, 2401-2408). In the present report, the phosphorylation of these proteins was examined in cells expressing the nonmyristylated mutants of src that are not transformed. A good correlation was found between transformation and the tyrosine phosphorylation of a 22-kDa protein. Tyrosine phosphorylation of the 22-kDa protein was reduced more than 95% in cells expressing the nonmyristylated mutants of src. Size fractionation revealed that the 22-kDa phosphoprotein in transformed chick fibroblasts is found in a Mr 150,000 complex. Monoclonal antibodies were used to screen various chicken tissues where the 22-kDa protein was found at high levels in muscle and lung with low levels in epithelial cells and brain. The 22-kDa protein becomes an excellent candidate for a mediator of transformation by the tyrosine kinase class of oncogenes.  相似文献   

15.
A variety of viral and signal transduction proteins are known to be myristoylated. Although the role of myristoylation in protein-lipid interaction is well established, the involvement of myristoylation in protein-protein interactions is less well understood. CAP-23/NAP-22 is a brain-specific protein kinase C substrate protein that is involved in axon regeneration. Although the protein lacks any canonical calmodulin (CaM)-binding domain, it binds CaM with high affinity. The binding of CAP-23/NAP-22 to CaM is myristoylation dependent and the N-terminal myristoyl group is directly involved in the protein-protein interaction. Here we show the crystal structure of Ca2+-CaM bound to a myristoylated peptide corresponding to the N-terminal domain of CAP-23/NAP-22. The myristoyl moiety of the peptide goes through a hydrophobic tunnel created by the hydrophobic pockets in the N- and C-terminal domains of CaM. In addition to the myristoyl group, several amino-acid residues in the peptide are important for CaM binding. This is a novel mode of binding and is very different from the mechanism of binding in other CaM-target complexes.  相似文献   

16.
17.
Limb bud cells of chick embryos (stages 23–24) were dissociated into single cells, reaggregated, and cultured in vitro for about a week. δ-Crystallin, generally thought to be a lens-specific protein in the chick, was detected in the aggregates by indirect immunofluorescent staining, double immunodiffusion test, and immunoelectrophoresis with specific antiserum against δ-crystallin. Cells containing δ-crystallin were distributed in epidermal cell clusters and also in mesenchymal tissues surrounding cartilage nodules in the aggregates. Those cells in mesenchymal tissues were shown to have originated from the mesoderm of the limb bud, and those in epidermal cell clusters probably originated from the ectoderm. The possible cellular origin of this appearance of δ-crystallin was discussed.  相似文献   

18.
Retroviral infection is associated with immunosuppression, which has been shown to be due, in part, to the action of the envelope protein p15E. We studied a synthetic peptide (CKS-17) homologous to a highly conserved domain of the retroviral envelope protein p15E, which, when conjugated to BSA (CKS-17-BSA), can inhibit IL-1- and phorbol ester-mediated responses in cultured murine thymoma cells, and Ca2(+)- and phosphatidylserine-dependent protein kinase C (PKC) activity of cell homogenates. We characterized the mechanism of inhibition of PKC by the peptide. Using PKC purified from rat brain we found that CKS-17-BSA inhibited PKC-catalyzed Ca2(+)- and phosphatidylserine-dependent histone phosphorylation with an estimated ID50 of 4 microM. CKS-17-BSA did not inhibit the catalytic subunit of cAMP-dependent protein kinase. CKS-17-BSA also inhibited the Ca2(+)- and PS-independent activity of a catalytic fragment of PKC that was generated by limited trypsin treatment. However, CKS-17-BSA did not act as a competitive inhibitor of PKC with respect to ATP or phosphoacceptor substrate, despite the similarity between the CKS-17 sequence and substrates and pseudosubstrates of PKC. We conclude that this peptide homologue of a retroviral envelope protein has a novel mechanism of inhibition of PKC.  相似文献   

19.
The cell line TNR9 (E. Butler-Gralla and H. R. Herschman, J. Cell. Physiol. 107:59-67, 1981) in a Swiss 3T3 cell variant that expresses protein kinase C (PKC) but is mitogenically nonresponsive to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). We have found that PKCs purified from variant and parental cells are identical as judged by kinase activity, protease mapping, and column chromatography. We analyzed cellular levels and subcellular location of PKC in TPA-treated 3T3 and TNR9 cells via immunoprecipitation of [35S]methionine-labeled protein and assay of immune-complex PKC kinase activity. TNR9 cells grew to higher densities than parental 3T3 cells. TNR9 cells at maximal density did not down regulate PKC in response to long-term TPA treatment. We compared the 80-kilodalton (kDa) PKC substrate phosphorylation in 3T3 and TNR9 cells by using two-dimensional gels and found that TNR9 cells treated with TPA for 30 min contained only 10 to 15% as much 32Pi associated with the 80-kDa as did parental cells. The TNR9 80-kDa substrate was present at reduced levels compared with the parental-cell 80-kDa substrate as judged by immunoblot and silver staining. Thus, the loss of mitogenic responsiveness to TPA in TNR9 cells is accompanied by resistance to TPA-mediated down regulation of PKC and reduced phosphosubstrate levels.  相似文献   

20.
We report here the detection of a high molecular weight (greater than 400,000) cytoskeletal protein in the myogenic and neural tube derived structures of the chick embryo using a monoclonal antibody, F51H2. Immunohistological analysis reveals that this protein is concentrated in the myotome part of the somites, in the heart primordium, and in the neural tube at the end of the 2nd day of incubation. In cultured fibroblasts, the antibody appeared to decorate a filamentous network, although immunoreactivity was not detected on mesenchymal cells in situ. This network was also observed in cultured myoblasts where it has been demonstrated to be coincident to that of desmin. In colchicine-treated cells the immunoreactivity coincided with the perinuclear cap formed by the collapse of intermediate filaments (IFs). Immunoblot experiments confirmed the early distribution of F51H2 antigen in muscle and nerve tissues and its concentration in a salt-resistant IF-rich fraction of muscle tissues. In addition, there is a progressive loss of immunoreactivity during development. The immunoreactive band on sodium dodecyl sulfate gels was faint in tissues from newly hatched chickens and absent in adult tissues. It is suggested that the monoclonal antibody observed herein reacts with an embryo specific high molecular weight protein that is associated with IFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号