首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. J. Ford  P. Slack  M. Black  J. M. Chapman 《Planta》1976,132(2):205-208
Summary A re-examination has been made of the supposed regulation by the axis of cotyledonary isocitrate lyase (EC 4.1.3.1) activity in Cucumis sativas L. and Cucurbita maxima Duch. and greening in cucumis. When precautions are taken to ensure that isolated cotyledons and cotyledons attached to the axis have equal access to oxygen and/or water no axis effects can be observed. The results underline the importance of maintaining excised plant parts in comparable physical conditions if meaningful physiological measurements are to be made. Previous reports describing a controlling role for the axis are therefore most probably incorrect, although alternative regulatory mechanisms mediated by the axis are still possible.  相似文献   

2.
The question of why the human eye has two axes, a photopic visual axis, and an eye axis, is just as justified as the one of why the fovea is not on the eye axis, but instead is on the visual axis. An optical engineer would have omitted the second axis and placed the fovea on the eye axis. The answer to the question of why the design of the real eye differs from the logic of the engineer is found in its prenatal development. The biaxial structure was the only possible consequence of the decision to invert the retinal layers. Accordingly, this is of considerable importance. It, in turn, forms the basis of the interpretation of the retina as a cellular 3D phase grating, and can provide a grating-optical interpretation of adaptive effects (Purkinje shift) and aperture phenomena (Stiles-Crawford effects I and II, Bezold-Brücke phenomenon) and visual acuity data in photopic and scotopic vision.  相似文献   

3.
The orientation of the triclinic phase of cellulose in the cell wall of Valonia ventricosa J. Agardh was investigated by X-ray- and electron-diffraction analysis. In addition to the well-documented uniplanar-axial organization of the cell wall which requires that the a * axis should be always perpendicular to the wall surface, the direction of this axis was also found to be pointing outward from the plasma membrane side of the wall. This unidirectionality was persistent throughout the various layers that constitute the cell wall and also for the three microfibrillar orientations that occur in Valonia cell walls. The unidirectionality of the a * axis indicates, in particular, that the Valonia cellulose microfibrils are not twisted along their axis. These observations are consistent with a cellulose biosynthetic scheme where a close association exists between terminal-complex orientations and those of the cellulose microfibrils. In this context, the unidirectionality of the a * axis of cellulose seems to be related to the restricted mobility of the terminal complexes which are able to slide in the plasma membrane but not to rotate along their long axis.Abbreviations TC terminal complex This work was initiated during a visit of J.F.R at Grenoble in the framework of a France-Québec exchange program. J.S. was recipient of a CNRS fellowship. The diagram in Fig. 8 was kindly drawn for us by Miss Yukie Saito from the Department of Forest Products, the University of Tokyo.  相似文献   

4.
In this study, the standard-sequence properties of a joint coordinate system were implemented for the glenohumeral joint by the use of a set of instantaneous geometrical planes. These are: a plane that is bound by the humeral long axis and an orthogonal axis that is the cross product of the scapular anterior axis and this long axis, and a plane that is bounded by the long axis of the humerus and the cross product of the scapular lateral axis and this long axis. The relevant axes are updated after every decomposition of a motion component of a humeral position. Flexion, abduction and rotation are then implemented upon three of these axes and are applied in a step-wise uncoupling of an acquired humeral motion to extract the joint coordinate system angles. This technique was numerically applied to physiological kinematics data from the literature to convert them to the joint coordinate system and to visually reconstruct the motion on a set of glenohumeral bones for validation.  相似文献   

5.
In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.  相似文献   

6.
7.
Morton (American Journal of Physical Anthropology 5, 305–336, 1922) used the longest metatarsal, which he assumed functions as a lever during locomotion, to define the functional axis of the primate foot. In humans and apes, the functional foot axis lies on the second digit, whereas that of nonhominoid anthropoids is mostly on the third digit, suggesting that a medial shift of the functional axis occurred during primate foot evolution. Myological observations support this idea; the dorsal interossei of the human foot are arranged around the second digit, whereas those of nonhominoid anthropoids are around the third digit. However, it is still unclear when, why, and how such a change in foot musculature occurred. In addition, there is inconsistency among the limited number of studies that have examined foot musculature in apes. We examined modifications in the interosseous muscles of the chimpanzee, gibbon, spider monkey, and Japanese macaque in terms of the shift in the functional foot axis. We found that the dorsal interossei are arranged around the third digit; this is true even in the chimpanzee, whose functional axis based on metatarsal length lies on the second digit. This suggests that the change in the arrangement of the interosseous muscles phylogenetically lagged behind the shift of the osteological axis. Our results also indicate that the dorsal interossei are composite muscles consisting of the deep short flexors and the intermetatarsal abductors. We postulate that changes in the contributions of these 2 components to the formation of dorsal interossei likely occurred in the hominin lineage, resulting in the medial shift of the myological axis. The medial shift of the functional foot axis may have started with the elongation of the second metatarsal in the hominoid ancestors’ lineage, and was completed on the rearrangement of the interosseous muscles.  相似文献   

8.
We present a method which improves the determination of geometric parameters of unicellular organisms with prolate ellipsoid geometry, such as Dunaliella. Approximately determined axis lenghts were obtained from transmission electron micrographs of ultrathin sections of microalgae. The density functions generated by these ‘axis lengths’ have poles which can be used to determine the short half axis length and ratio of axis lengths of the ellipsoid in order to determine the true cell volume.  相似文献   

9.
刘海荣 《植物研究》2008,28(6):679-683
对31个寒地李资源进行了电镜扫描,在测量极轴、赤道轴,条脊宽、穿孔径、穿孔频率后,分析出31个李品种花粉粒大小属于小至中等,31个李品种大多为长球形(比值2~1.14),个别品种牛心李、长李17号、吉林六号为超长球形(比值>2), 均有3条沿极轴走向的等间距的发芽沟,发芽沟的有开张、半开张、不开张3种。31个李品种的外壁纹饰可以分为七种类型,大多数李品种的纹饰是条脊平行或分枝多穿孔纹饰,云状纹饰品种少为矮甜李、龙园秋李,脑纹状纹饰只有延吉李。根据极轴、赤道轴、条脊宽、穿孔径、穿孔频率5项指标,采用最远距离法对31个李品种进行聚类分析,牛心李与其它30个李品种亲缘较远。  相似文献   

10.
Diamine oxidase (DAO, EC 1.4.3.6.), which participates in oxidative catabolism of polyamines (PAs), was not detected in the dry viable chickpea (Cicer arietinum L.) seeds. From the time when the embryonic axis acquired an aerobic metabolism, DAO increased concomitantly with the growth of the embryonic axis and at the same time with the deterioration of the cotyledons, although in these organs the values were clearly lower than in the axis. The highest DAO activity in the embryonic axis of seedlings grown for 72 and 96 h was found in the elongation, differentiation and hypocotyl zones, while the lowest was in the apex and plumule. The absence of cotyledons promoted the early appearance of DAO in the embryonic axis. When germination occurred at supraoptimal temperatures (30 – 35 °C), DAO activity was sharply inhibited both in the cotyledons and in the embryonic axis. This inhibition was accentuated further in the presence of cyclohexylamine, an inhibitor of spermidine synthase activity, to such a degree that DAO was undetectable in the cotyledons. DAO inhibition by EGTA and the pronounced reversal induced by Ca2+ implies that calcium may be related to DAO activity. The presence of putrescine, spermidine and spermine in the germination medium stimulated DAO activity, although this activity was inhibited when the exogenous PA was cadaverine.  相似文献   

11.
The subtalar joint is important in frontal plane movement and posture of the hindfoot. Abnormal subtalar joint moments caused by muscle forces and the ground reaction force acting on the foot are thought to play a role in various foot deformities. Calculating joint moments typically requires knowledge of the location of the joint axis; however, location of the subtalar axis from measured movement is difficult because the talus cannot be tracked using skin-mounted markers. The accuracy of a novel technique for locating the subtalar axis was assessed in vivo using magnetic resonance imaging. The method was also tested with skin-mounted markers and video motion analysis. The technique involves applying forces to the foot that cause pure subtalar joint motion (with negligible talocrural joint motion), and then using helical axis decomposition of the resulting tibiocalcaneal motion. The resulting subtalar axis estimates differed by 6° on average from the true best-fit subtalar axes in the MRI tests. Motion was found to have been applied primarily about the subtalar joint with an average of only 3° of talocrural joint motion. The proposed method provides a potential means for obtaining subject-specific subtalar axis estimates which can then be used in inverse dynamic analyses and subject-specific musculoskeletal models.  相似文献   

12.
13.
Optimal functioning of the hypothalamo–pituitary–adrenal (HPA) axis is paramount to maximizing fitness in vertebrates. Research in laboratory mammals has suggested that maternally-induced stress can cause significant variation in the responsiveness of an offspring's HPA axis involving both pre- and post-natal developmental mechanisms. However, very little is known regarding effects of maternal stress on the variability of offspring adrenocortical functioning in free-living vertebrates. Here we use an experimental approach that independently lowers the quality of both the pre- and post-natal developmental environment to examine programming and plasticity in the responsiveness of the HPA axis in fledglings of a free-living passerine, the European starling (Sturnus vulgaris). We found that mimicking a hormonal signal of poor maternal condition via an experimental pre-natal increase in yolk corticosterone decreased the subsequent responsiveness of the HPA axis in fledglings. Conversely, decreasing the quality of the post-natal developmental environment (by decreasing maternal provisioning capability via a maternal feather-clipping manipulation) increased subsequent responsiveness of the HPA axis in fledglings, apparently through direct effects on nestling body condition. The plasticity of these responses was sex-specific with smaller female offspring showing the largest increase in HPA reactivity. We suggest that pre-natal, corticosterone-induced, plasticity in the HPA axis may be a ‘predictive adaptive response’ (PAR): a form of adaptive developmental plasticity where the advantage of the induced phenotype is manifested in a future life-history stage. Further, we introduce a new term to define the condition-driven post-natal plasticity of the HPA axis to an unpredictable post-natal environment, namely a ‘reactive adaptive response’ (RAR). This study confirms that the quality of both the pre- and post-natal developmental environment can be a significant source of variation in the responsiveness of the HPA axis, and provides a frame-work for examining ecologically-relevant sources of stress-induced programming and plasticity in this endocrine system in a free-living vertebrate, respectively.  相似文献   

14.
Femoral lengthening with intramedullary nails can create alterations in the mechanical axis of the limb. This is based on the relationship of the anatomic femur axis to the mechanical femur axis, which is typically 5-9 degrees valgus. We developed trigonometric formulas to calculate the predicted change, using the lengths of the tibia, femur, and whole limb; the amount of lengthening; and the angle between the anatomic and the mechanical axis of the femur. We recognized three patterns depending on whether the overall limb mechanical axis is lateral (valgus), medial (varus), or straight through the center of the knee. The varus and valgus patterns lead to similar formulas. When the mechanical axis goes directly through the center of the knee joint, the formula simplifies. These formulas could be incorporated into digital radiographic programs to predict the change in mechanical axis deviation that will develop from lengthening along the anatomic femur axis with an intramedullary lengthening nail.  相似文献   

15.
Lenses within the schizochroal eyes of phacopine trilobites are made principally of calcite, and characterization of them using light microscopy and high‐resolution electron imaging and diffraction has revealed an array of microstructural arrangements that suggest a common original pattern across the suborder. The low convexity lenses of Odontochile hausmanni and Dalmanites sp. contain calcite fibres termed trabeculae. The c axis of trabecular calcite lies parallel to the lens axis, and adjacent trabeculae are distinguished by small differences in their a axis orientations. Despite the common alignment, the boundaries between trabeculae cross‐cut the c axis as they fan out towards the lens base. Trabeculae are absent from the lens immediately beneath the visual surface, and instead, a radial fringe is present and is composed of micrometre‐thick sheets of calcite whose c axes are oriented at a low angle to the visual surface. High convexity lenses are more common than those of lower convexity among the species studied, and they have a much thicker radial fringe. Beneath this fringe, all of the lens calcite is oriented with its c axis parallel to the lens axis and it lacks trabeculae. We propose that both the high and low convexity lenses formed by rapid growth of calcite from a surface that migrated inwards from the cornea, and they may have had an amorphous calcium carbonate precursor. The trabeculae and radial fringes are unlikely to have had any beneficial effect on the transmission or focusing of light, but rather are the outcomes of an elegant solution to the problem of how to construct a biconvex lens from a crystalline solid.  相似文献   

16.
Functional calibration methods were devised to improve repeatability and accuracy of the knee flexion–extension axis, which is used to define the medio-lateral axis of the femur coordinate system in gait analysis. Repeatability of functional calibration methods has been studied extensively in healthy individuals, but not accuracy in the absence of a benchmark knee axis. We captured bi-plane fluoroscopy data of the knee joint in 17 subjects with unilateral total knee arthroplasty during treadmill walking. The prosthesis provided a benchmark knee axis to evaluate the functional calibration methods. Stereo-photogrammetry data of thigh and shank marker clusters were captured simultaneously to investigate the effect of soft tissue artefact (STA). Three methods were tested, the Axis Transformation Technique (ATT) finds the best single fixed axis of rotation, 2DofKnee finds the axis that minimises knee varus–valgus and trajAJC finds the axis perpendicular to the trajectory, in the transverse plane of the femur, of a point located on the longitudinal axis of the tibia. Using fluoroscopy data, functional axes formed an angle of less than 2° in the transverse plane with the benchmark axis. True internal–external range of movement was correlated with decreased accuracy for ATT, while varus–valgus range of movement was correlated with decreased accuracy for 2DofKnee and trajAJC. STA had negative impact on accuracy and variability. Using stereo-photogrammetry data, the accuracy of 2DofKnee was 1.7°(SD: 5.1°), smaller than ATT 2.9°(SD: 5.1°) but not to trajAJC 1.7°(SD: 5.2°). Our results confirm that of previous studies, which utilised the femur condylar axis as reference.  相似文献   

17.
Summary The pattern of divisions in the thallus ofPelvetia compressa embryos was determined with respect to the embryonic growth axis. To detect all possible division planes, embryos were viewed from two vantages which permitted observations of (1) the thallus pole and (2) the longitudinal embryonic profile. Following formation of rhizoid and thallus cells by any asymmetrical division transverse to the embryonic axis that is established prior to any divisions, the thallus cell divided twice along the embryonic axis (axial divisions) in orthogonal planes, and then divided transverse to the growth axis. This division pattern produced an eight-cell thallus with four cells in each of two layers. The spatial relation between gravity and the first axial division was investigated, and gravity was found to have little effect on the alignment of this division. The reproducible pattern of divisions in the thallus indicates spatial control of spindle positioning.Abbreviations ASW artificial seawater - AF after fertilization  相似文献   

18.
The establishment of anteroposterior (AP) polarity in the early mouse epiblast is crucial for the initiation of gastrulation and the subsequent formation of the embryonic (head to tail) axis. The localization of anterior and posterior determining genes to the appropriate region of the embryo is a dynamic process that underlies this early polarity. Several studies indicate that morphological and molecular markers which define the early AP axis are first aligned along the short axis of the elliptical egg cylinder. Subsequently, just prior to the time of primitive streak formation, a conformational change in the embryo realigns these markers with the long axis. We demonstrate that embryos lacking the signaling factor Wnt3 exhibit defects in this axial realignment. In addition, chimeric analyses and conditional removal of Wnt3 activity reveal that Wnt3 expression in the epiblast is required for induction of the primitive streak and mesoderm whereas activity in the posterior visceral endoderm is dispensable.  相似文献   

19.
Most E  Axe J  Rubash H  Li G 《Journal of biomechanics》2004,37(11):1743-1748
Various flexion axes have been used in the literature to describe knee joint kinematics. This study measured the passive knee kinematics of six cadaveric human knee specimens using two widely accepted flexion axes; transepicondylar axis and the geometric center axis. These two axes were found to form an angle of 4.0 degrees +/- 0.8 degrees. The tibial rotation calculated using the transepicondylar axis was significantly different than the rotation obtained using the geometric center axis for the same knee motion. At 90 degrees of flexion, the tibial rotation obtained using the transepicondylar axis was 4.8 degrees +/- 9.4 degrees whereas the rotation recorded using the geometric center axis at the same flexion angle was 13.8 degrees +/- 10.2 degrees. At 150 degrees of knee flexion, the rotations obtained from the transepicondylar and the geometric center axes were 7.2 degrees +/- 5.7 degrees and 19.9 degrees +/- 6.9 degrees, respectively. The data suggest that a clear definition of the flexion axis is necessary when reporting knee joint kinematics.  相似文献   

20.
The resistance of goose (Anser anser f. domestica) eggs to damage was determined by measuring the average rupture force, specific deformation and rupture energy during their compression at different compression speeds (0.0167, 0.167, 0.334, 1.67, 6.68 and 13.36 mm/s). Eggs have been loaded between their poles (along X axis) and in the equator plane (Z axis). The greatest amount of force required to break the eggs was required when eggs were loaded along the X axis and the least compression force was required along the Z axis. This effect of the loading orientation can be described in terms of the eggshell contour curvature. The rate sensitivity of the eggshell rupture force is higher than that observed for the Japanese quail’s eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号