首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Retrograde tracing, using Fast Blue dye, was employed to determine the distribution of enteric nerve cells that project to the superior mesenteric and inferior mesenteric ganglia of the guinea-pig. Retrogradely labelled neurons were found in the myenteric but not submucous ganglia. When the superior mesenteric ganglion was injected, labelled neurons were found in low frequencies (less than 5 nerve cell bodies/cm2) in the duodenum, jejunum, ileum, caecum and proximal colon. The distal colon was analysed in five segments of equal length (1–5; oral to anal). Segment 1 had about 4 labelled nerve cells/cm2, whereas segments 2 to 5 displayed an average of about 25 nerve cells/cm2. The rectum contained about 36 labelled neurons/cm2. After injection of the inferior mesenteric ganglia with Fast Blue, no labelled neurons were found in the duodenum, jejunum, ileum or caecum. No labelled cells were observed in the gallbladder. A small number of labelled cells occurred in the proximal colon and in segment 1 of the distal colon. The frequency of labelled cells increased markedly in the more anal regions of the distal colon, and reached a peak in the rectum (138 cells/cm2). Both nerve lesions and immersion of the cut nerve in Fast Blue solution showed that the superior mesenteric nerve carries the axons of neurons located in the middle distal colon to the superior mesenteric ganglion. Almost half of the neurons in the rectum that project to the inferior mesenteric ganglia do so via the hypogastric nerves. Of neurons that projected to the inferior or superior mesenteric ganglia from the colon or rectum, similar proportions (about 75–80%) showed immunoreactivity for calbindin or VIP. For each of the prevertebral ganglia (coeliac, superior mesenteric and inferior mesenteric) the great majority of peripheral inputs arise from the large intestine.  相似文献   

2.
Summary The digestive tract of the guinea-pig, from the esophagus to the rectum, was examined in detail to determine the distribution and relative abundances of neurons in these organs that project to the coeliac ganglion and the routes by which their axons reach the ganglion. A retrogradely transported neuronal marker, Fast Blue, was injected into the coeliac ganglion. The esophagus, stomach, gallbladder, pancreas, duodenum, small intestine, caecum, proximal colon, distal colon and rectum were analysed for labelled neurons. Retrogradely labelled neurons were found only in the myenteric plexus of these organs, and in the pancreas. No labelled neurons were found in the gallbladder or the fundus of the stomach, or in the submucous plexus of any region. A small number of labelled neurons was found in the gastric antrum. An increasing density of labelled neurons was found along the duodenum. Similarly, an increasing density of labelled neurons was found from proximal to distal along the jejuno-ileum. However, the greates densities of labelled neurons were in the large intestine. many labelled neurons were found in the caecum, including a high density underneath its taeniae. An increasing density of labelled neurons was found along the length of the proximal colon, and labelled neurons were found in the distal colon and rectum. In total, more labelled cell bodies occurred in the large intestine than in the small intestine. The routes taken by the axons of viscerofugal neurons were ascertained by lesioning the nerve bundles which accompany vessels supplying regions of the digestive tract. Viscerofugal neurons of the caecum project to the coeliac ganglion via the ileocaeco-colic nerves; neurons in the proximal colon project to the ganglion via the right colic nerves, and neurons in the distal colon project to the ganglion via the mid colic and intermesenteric nerves. Neurons in the rectum project to the coeliac ganglion via the intermesenteric nerves. These nerves (except for the intermesenterics) all join nerve bundles from the small intestine that follow the superior mesenteric artery. All viscerofugal neurons of the caecum were calbindin-immunoreactive (calb-IR) and 94% were immunoreactive for vasoactive intestinal peptide (VIP-IR). In the proximal colon, 49% of labelled neurons were calb-IR and 85% were VIP-IR. In the distal colon, 80% of labelled neurons were calb-IR and 71% were VIP-IR.  相似文献   

3.
4.
豚鼠小肠神经节丛的NADPH—黄递酶组织化学观察   总被引:2,自引:0,他引:2  
目前已知,NADPH--黄递酶组化法可选择性地显示--氧化氮合成酶(NOsynthase,NOS)神经元。因此,我们以NADPH-黄递酶组化法,观察了豚鼠小肠肌间神经丛和粘膜下神经丛的神经网格以及NOS神经元。结果表明,三段小肠肌间神经丛的神经网眼大小和形态有明显差异,与对应的粘膜下神经丛相比,差异更显著。在肌间神经丛中,NADPH-黄递酶阳性神经元胞体大小不等;其长突起伸入节间束,而短突起较多,并可见短突起彼此连接.构成节内偶见的局部神经元回路。从小肠上段到下段,NOS神经元数量呈下降趋势。在粘膜下神经丛,我们也观察到少数NOS神经元。  相似文献   

5.
Using immunocytochemistry, NADPH-diaphorase (NADPHd) histochemistry and electron microscopy, the appearance of nitrergic enteric neurons in different digestive tract regions of the embryonic, neonatal and adult quail was studied in whole mounts and sections. NADPHd was first expressed by embryonic day 4–5 in two distinct locations, namely the mesenchyme of the gizzard primordium and at the caeco-colonic junction. At embryonic day 6, nitrergic neurons had already begun to form a myenteric nerve network in the wall of the proventriculus, gizzard and proximal part of the large intestine and by embryonic day 9, a myenteric network was visualized along the entire digestive tract of the quail. At the level of the stomach, this network was confined to the area covered by the intermediate muscles. By embryonic day 12–13, the NADPHd-positive myenteric neurons in the wall of the distal parts of the blind-ending paired caeca also became organized into ganglia. From this developmental stage on, a submucous nitrergic nerve network, sandwiched between the lamina muscularis mucosae and the luminal side of the outer muscle layer, became prominent in the proventriculus and intestinal walls. In the adult quail, only a minority of the NADPHd-positive neurons stained for vasoactive intestinal polypeptide (VIP) along the intestine. VIP-immunoreactive (IR) cell bodies were frequent in the myenteric plexus but not in the submucous plexus, whereas there were considerable numbers of NADPHd-positive neurons in both these plexuses. Nitrergic fibres were also observed in the outer muscle layer, but were almost absent from the lamina muscularis mucosa and lamina propria, in contrast to the dense VIP-ergic innervation encircling the bases of the intestinal crypts.  相似文献   

6.
用NADPH-d组织化学法对人胎大肠氮能神经元的发育进行了观察.结果表明第5个月胎龄时,肌间神经节处圆形细胞中部分细胞出现一氧化氮合酶(NOS)阳性反应,并分化成氮能神经细胞.第6个月胎龄时,氮能神经元胞体增大,突起伸长,在肌层、粘膜下层和肠腺基部出现氮能神经纤维分布.第7个月胎龄时,氮能神经元生长发育达到高峰,肌间神经节细胞数目增多,环肌层神经纤维分布密度增加,膨体结构明显.第8-10个月胎龄时,氮能神经元染色强度加深,其胞体分布以肌间神经节最多,粘膜下层和内环肌层较少.氮能神经纤维的分布密度以内环肌层最高,粘膜下层和外纵肌层次之,粘膜层较低.本研究揭示了大肠氮能神经元发育的变化规律.  相似文献   

7.
The timetable of cell generation, neuronal death and neuron numbers in the fused proximal glossopharyngeal (IX) and vagal (X) ganglion and distal IX and X ganglia were studied in normal and nerve growth factor (NGF) treated chick embryos. 3H-thymidine was injected between the 3rd and 7th days of incubation and embryos sacrificed on the 11th day. Neurons in the distal IX and X ganglia were generated between the 2nd and 5th days of incubation, the peak mitotic activity occurring on the 4th and 3rd days, respectively. Neurons of the proximal IX and X ganglion were generated between the 4th and 7th days, with maximum neuron generation on the 5th day of incubation. Counts of neurons in the 3 ganglia between the 5th and 18th days of incubation showed a maximum of 22,000 on the 8th day in the proximal IX and X ganglion and this decreased to 12,000 by the 13th day. In the distal IX ganglion, the neuron number decreased by 44% from 4,500 on the 6th day to 2,500 by the 11th day. A similar decrease of 43% was found in the distal X ganglion, the neuron number falling from 11,500 on the 7th day to 6,500 by the 11th day of incubation. Neuronal cell death in these ganglia extended from the 5th to the 12th day of incubation, maximum cell death occurring at or after the cessation of mitotic activity. NGF administration from the 5th to the 11th day of incubation did not have a measurable effect on the neurons of proximal IX and X and distal IX ganglia, but increased neuronal survival by 30% in the distal X ganglion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

9.
人胎大肠氮能神经元发育的研究   总被引:5,自引:0,他引:5  
By using histochemical methed of NADPH-diaphorse, the development of the nitrergic neurons in the large intestine of human fetus were studied. The results showed: At the fifth month of gestation, weak positive reaction of nitric oxide synthase (NOS) appeared in part of the round cells of intermuscular ganglia. The round cells differentiated into the nitrergic nerve cells. At the sixth month, the bodies of nitrergic neurons were obviously enlarged, the processes of which were lengthened. The nitrergic nerve fibers were seen in the muscle layer, the submucosa and the base of the intestinal gland. The growth and development of nitrergic neurons reached its peak at the seventh month. The number of intermuscular ganglionic cells was increased. The density of nitrergic nerve fibers was increased in the inner circular muscle layer, and have bead-like structures. At the eighth to tenth month, the staining intensity of nitrergic neurons was increased. The myenteric plexus was densely distributed with nitrergic nerve cell bodies, whereas the submucosa and the inner circular muscle layers contained only a few neurons. The nitrergic nerve fibers were observed in all layer of large intestine, the density of the distribution of nitrergic nerve fibers was by far the highest in the inner circular muscle layer, less in the submucosa and outer longitudinal muscle layer, and only a few were found in the mucous layer. To our knowledge, it is the first time that the development of nitrergic neurons in the large intestine of human fetus was demonstrated.  相似文献   

10.
Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27.Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia.It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.  相似文献   

11.
The origin of nitric oxide synthase-containing nerve fibers in rat celiac-superior mesenteric ganglion was examined using retrograde tracing techniques combined with the immunofluorescence method. Fluoro-Gold was injected into the celiac-superior mesenteric ganglion. Neuronal cell bodies retrogradely labeled with Fluoro-Gold in the thoracic spinal cord, the dorsal root ganglia at the thoracic level, the nodose ganglion, and the intestine from the duodenum to the proximal colon were examined for nitric oxide synthase immunoreactivity. About 60% of sympathetic preganglionic neurons in the intermediolateral nucleus projecting to the celiac-superior mesenteric ganglion were immunoreactive for nitric oxide synthase, as were approximately 27% of nodose ganglion neurons and about 65% of dorsal root ganglion neurons projecting to the cceliac-superior mesenteric ganglion. Neurons projecting to the celiac-superior mesenteric ganglion were found in the myenteric plexus of the small and large intestine. In the proximal colon, about 23% of such neurons were immunoreactive for nitric oxide synthase. However, in the small intestine, no immunoreactivity was found in these neurons.  相似文献   

12.
Corticotropin-releasing factor (CRF) injected peripherally induces clustered spike-burst activity in the proximal colon through CRF(1) receptors in rats. We investigated the effect of intraperitoneal CRF on proximal colon ganglionic myenteric cell activity in conscious rats using Fos immunohistochemistry on the colonic longitudinal muscle/myenteric plexus whole mount preparation. In vehicle-pretreated rats, there were only a few Fos immunoreactive (IR) cells per ganglion (1.2 +/- 0.6). CRF (10 microg/kg ip) induced Fos expression in 19.6 +/- 2.1 cells/ganglion. The CRF(1)/CRF(2) antagonist astressin (33 microg/kg ip) and the selective CRF(1) antagonist CP-154,526 (20 mg/kg sc) prevented intraperitoneal CRF-induced Fos expression in the proximal colon (number of Fos-IR cells/ganglion: 2.7 +/- 1.2 and 1.0 +/- 1.0, respectively), whereas atropine (1 mg/kg sc) had no effect. Double labeling of Fos with protein gene product 9.5 revealed the neuronal identity of activated cells that were encircled by varicose fibers immunoreactive to vesicular acetylcholine transporter. Fos immunoreactivity was mainly present in choline acetyltransferase-IR nerve cell bodies but not in the NADPH-diaphorase-positive cells. These results indicate that peripheral CRF activates myenteric cholinergic neurons in the proximal colon through CRF(1) receptor.  相似文献   

13.
Summary The presence of aromatic 1-amino acid decarboxylase (AADC) in nerve cell bodies of the intrinsic plexuses of the guinea-pig small intestine was demonstrated by incubating segments of intestine with 1-dopa in the presence of an inhibitor of monoamine oxidase, pargyline. After such incubation, some nerve cell bodies gave a fluorescence histochemical reaction indicative of the presence of a decarboxylated product of 1-dopa, probably dopamine. No fluorescence reaction occurred in the unincubated control or if the inhibitor of AADC, RO 4-4602, was included in the incubation mixture. The AADC-containing cell bodies apparently do not take up and store dopamine, because no fluorescence could be detected after incubation with dopamine and a monoamine oxidase inhibitor. The AADC-containing cells were found in about half of the ganglia of the submucous plexus of the guinea-pig small intestine, but were considerably less frequent in the myenteric plexus. They were also found in the other areas examined in this study, that is, in both enteric plexuses of the guinea-pig distal colon and of the small intestines of rabbits and rats.  相似文献   

14.
The aim of this study was to find an improved method with which to stain the entire population of myenteric neurons in the different segments of the developing chicken intestine. Histochemical staining with cuprolinic blue (quinolinic phthalocyanine) and immunostaining against neurofilament (NF) were performed on whole mounts prepared from intestinal segments of embryonic (day 19 of incubation) and hatched (1, 2, 4 and 7 days after hatching) chickens. Double labelling was performed to evaluate to what extent the two markers visualise the same nerve cell population. Cuprolinic blue stained neuronal somata highly selectively, whereas processes and glia cells were poorly labelled. The cuprolinic blue-positive neurons were uniform in shape. NF immunostaining revealed a morphologically highly variable neuron population. Double labelling with cuprolinic blue and NF resulted in an intensification of both stainings, allowing an accurate morphological classification of NF-stained myenteric neurons. Data obtained from the counting of cuprolinic blue-positive neurons were subjected to two-way ANOVA and the Tukey probe. The densities of ganglia and neurons were found to decrease, and the mean number of neurons per myenteric ganglion to increase, with different dynamics along the longitudinal axis of the gut during the examined time span. The variances in the number of NF-positive neurons were not homogeneous, and the data were therefore not suitable for ANOVA. Accordingly, only semiquantitative conclusions could be drawn.  相似文献   

15.
The distribution of neurokinin-2 (NK2) tachykinin receptors was investigated by immunohistochemistry in the guinea-pig oesophagus, stomach, small and large intestine. Receptor immunoreactivity occurred at the surfaces of smooth muscle cells throughout the digestive tract. Nerve fibre varicosities in enteric ganglia were also immunoreactive. In myenteric ganglia, these varicosities were most numerous in the ileum, frequent, but less dense, in the proximal colon and caecum, rare in the distal colon, extremely infrequent in the rectum and duodenum, and absent from the stomach and oesophagus. Reactive varicosities were rare in the submucous ganglia. Reactive nerve fibres in the mucosa were only found in the caecum and proximal colon. Strong NK2 receptor immunoreactivity was also found on the surfaces of enterocytes at the bases of mucosal glands in the proximal colon. Receptors were not detectable on the surfaces of nerve cells or on non-terminal axons. Reactivity did not occur on nerve fibres innervating the muscle. Denervation studies showed that the immunoreactive varicosities in the myenteric plexus of the ileum were the terminals of descending interneurons. Immunoreactivity for nitric oxide synthase was colocalised with NK2 receptor (NK-R) immunoreactivity in about 70% of the myenteric varicosities in the small intestine. Bombesin immunoreactivity occurred in about 30% of NK2-R immunoreactive varicosities in the small intestine. Received: 10 April 1996 / Accepted: 13 May 1996  相似文献   

16.
Three vesicular glutamate transporters (VGLUT1-3) have previously been identified in the central nervous system, where they define the glutamatergic phenotype, and their expression is tightly regulated during brain development. In the present study we applied immunocytochemistry to examine the distribution of the immunoreactivity of all three VGLUTs during prenatal development of the myenteric plexus in the human small intestine. We also investigated changes in their localization in the different segments of the small intestine and in the different compartments of the developing myenteric ganglia. Immunoreactivity against all three VGLUTs was found predominantly in the ganglionic neuropil, interganglionic varicose fibers and perisomatic puncta, but cytoplasmic labeling with different intensities also occurred. Each transporter displayed a characteristic spatiotemporal expression pattern, with the transient increase or decrease of immunoreactive cell bodies, varicosities or perisomatic puncta, depending on the fetal age, the gut segment or the ganglionic compartment. Throughout gestational weeks 14-23, VGLUT1 immunoreactivity always predominated over VGLUT2 immunoreactivity, though both peaked around week 20. VGLUT3 immunoreactivity was less abundant in the developing myenteric plexus than those of VGLUT1 and VGLUT2 immunoreactivity. It was mainly expressed in the ganglionic neuropil and in the perisomatic puncta throughout the examined gestational period. Neuronal perikarya immunoreactive for VGLUT3 were restricted to between weeks 18 and 20 of gestation and exclusively to the oral part of the small intestine.  相似文献   

17.
The aganglionic bowel in short-segment Hirschsprung's disease is characterized both by the absence of enteric ganglia and the presence of extrinsic thickened nerve bundles (TNBs). The relationship between the TNBs and the loss of enteric ganglia is unknown. Previous studies have described decreasing numbers of ganglia with increasing density of TNBs within the transition zone (TZ) between ganglionic and aganglionic gut, and there is some evidence of spatial contact between them in this region. To determine the cellular interactions involved, we have analysed the expression of perineurial markers of TNBs and enteric ganglionic markers for both neural cells and their ensheathing telocytes across four cranio-caudal segments consisting of most proximal ganglionic to most distal aganglionic from pull-through resected colon. We show that in the TZ, enteric ganglia are abnormal, being surrounded by perineurium cells characteristic of TNBs. Furthermore, short processes of ganglionic neurons extend caudally towards the aganglionic region, where telocytes in the TNB are located between the perineurium and nerve fibres into which they project telopodes. Thus, enteric ganglia within the TZ have abnormal structural characteristics, the cellular relationships of which are shared by the TNBs. These findings will help towards elucidation of the cellular mechanisms involved in the aetiology of Hirschsprung's disease.  相似文献   

18.
Serotonin [5-hydroxytryptamine (5-HT)] acts as a modulator of colonic motility and secretion. We characterized the action of the 5-HT precursor 5-hydroxytryptophan (5-HTP) on colonic myenteric neurons and propulsive motor activity in conscious mice. Fos immunoreactivity (IR), used as a marker of neuronal activation, was monitored in longitudinal muscle/myenteric plexus whole mount preparations of the distal colon 90 min after an intraperitoneal injection of 5-HTP. Double staining of Fos IR with peripheral choline acetyltransferase (pChAT) IR or NADPH-diaphorase activity was performed. The injection of 5-HTP (0.5, 1, 5, or 10 mg/kg ip) increased fecal pellet output and fluid content in a dose-related manner, with a peak response observed within the first 15 min postinjection. 5-HTP (0.5-10 mg/kg) dose dependently increased Fos expression in myenteric neurons, with a maximal response of 9.9 +/- 1.0 cells/ganglion [P < 0.05 vs. vehicle-treated mice (2.3 +/- 0.6 cells/ganglion)]. There was a positive correlation between Fos expression and fecal output. Of Fos-positive ganglionic cells, 40 +/- 4% were also pChAT positive and 21 +/- 5% were NADPH-diaphorase positive in response to 5-HTP, respectively. 5-HTP-induced defecation and Fos expression were completely prevented by pretreatment with the selective 5-HT4 antagonist RS-39604. These results show that 5-HTP injected peripherally increases Fos expression in different populations of cholinergic and nitrergic myenteric neurons in the distal colon and stimulates propulsive colonic motor function through 5-HT4 receptors in conscious mice. These findings suggest an important role of activation of colonic myenteric neurons in the 5-HT4 receptor-mediated colonic propulsive motor response.  相似文献   

19.
Yu Q  Ji R  Gao X  Fu J  Guo W  Song X  Zhao X  Burnstock G  Shi X  He C  Xiang Z 《Cell and tissue research》2011,344(2):227-237
Single- and double-immunostaining techniques were used systematically to study the distribution pattern and neurochemical density of oxytocin-immunoreactive (-ir) neurons in the digestive tract of the guinea pig. Oxytocin immunoreactivity was distributed widely in the guinea pig gastrointestinal tract; 3%, 13%, 17%, 15%, and 10% of ganglion neurons were immunoreactive for oxytocin in the myenteric plexuses of the gastric corpus, jejunum, ileum, proximal colon, and distal colon, respectively, and 36%, 40%, 52%, and 56% of ganglion neurons were immunoreactive for oxytocin in the submucosal plexuses of the jejunum, ileum, proximal colon, and distal colon, respectively. In the myenteric plexus, oxytocin was expressed exclusively in the intrinsic enteric afferent neurons, as identified by calbindin 28 K. In the submucosal plexuses, oxytocin was expressed in non-cholinergic secretomotor neurons, as identified by vasoactive intestinal polypeptide. Oxytocin-ir nerve fibers in the inner circular muscle layer possibly arose from the myenteric oxytocin-ir neurons, and oxytocin-ir nerve fibers in the mucosa possibly arose from both the myenteric and submucosal oxytocin-ir neurons. Thus, oxytocin in the digestive tract might be involved in gastrointestinal tract motility mainly via the regulation of the inner circular muscle and the balance of the absorption and secretion of water and electrolytes.  相似文献   

20.
Nitric oxide (NO) is a gas produced through the action of nitric oxide synthase that acts as a neurotransmitter in the central nervous system (CNS) of adult gastropod mollusks. There are no known reports of the presence of NOS-containing neurons and glial cells in young and adult Megalobulimus abbreviatus. Therefore, NADPH-d histochemistry was employed to map the nitrergic distribution in the CNS of young and adult snails in an attempt to identify any transient enzymatic activity in the developing CNS. Reaction was observed in neurons and fibers in all CNS ganglia of both age groups, but in the pedal and cerebral ganglia, positive neurons were more intense than in other ganglia, forming clusters symmetrically located in both paired ganglia. However, neuronal NADPH-d activity in the mesocerebrum and pleural ganglia decreased from young to adult animals. In both age groups, positive glial cells were located beneath the ganglionic capsule, forming a network and surrounding the neuronal somata. The trophospongium of large and giant neurons was only visualized in young animals. Our results indicate the presence of a nitrergic signaling system in young and adult M. abbreviatus, and the probable involvement of glial cells in NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号