首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of two plant annexins, annexin 24(Ca32) from Capsicum annuum and annexin Gh1 from Gossypium hirsutum, with phospholipid membranes have been characterized using liposome-based assays and adsorption to monolayers. These two plant annexins show a preference for phosphatidylserine-containing membranes and display a membrane binding behavior with a half-maximum calcium concentration in the sub-millimolar range. Surprisingly, the two plant annexins also display calcium-independent membrane binding at levels of 10-20% at neutral pH. This binding is regulated by three conserved surface-exposed residues on the convex side of the proteins that play a pivotal role in membrane binding. Due to quantitative differences in the membrane binding behavior of N-terminally His-tagged and wild-type annexin 24(Ca32), we conclude that the N-terminal domain of plant annexins plays an important role, reminiscent of the findings in their mammalian counterparts. Experiments elucidating plant annexin-mediated membrane aggregation and fusion, as well as the effect of these proteins on membrane surface hydrophobicity, agree with findings from the membrane binding experiments. Results from electron microscopy reveal elongated rodlike assemblies of plant annexins in the membrane-bound state. It is possible that these structures consist of protein molecules directly interacting with the membrane surface and molecules that are membrane-associated but not in direct contact with the phospholipids. The rodlike structures would also agree with the complex data from intrinsic protein fluorescence. The tubular lipid extensions suggest a role in the membrane cytoskeleton scaffolding or exocytotic processes. Overall, this study demonstrates the importance of subtle changes in an otherwise conserved annexin fold where these two plant annexins possess distinct modalities compared to mammalian and other nonplant annexins.  相似文献   

2.
The three-dimensional crystal structure of recombinant annexin Gh1 from Gossypium hirsutum (cotton fibre) has been determined and refined to the final R-factor of 0.219 at the resolution of 2.1 A. This plant annexin consists of the typical 'annexin fold' and is similar to the previously solved bell pepper annexin Anx24(Ca32), but significant differences are seen when compared to the structure of nonplant annexins. A comparison with the structure of the mammalian annexin AnxA5 indicates that canonical calcium binding is geometrically possible within the membrane loops in domains I and II of Anx(Gh1) in their present conformation. All plant annexins possess a conserved tryptophan residue in the AB loop of the first domain; this residue was found to adopt both a loop-in and a loop-out conformation in the bell pepper annexin Anx24(Ca32). In Anx(Gh1), the conserved tryptophan residue is in a surface-exposed position, half way between both conformations observed in Anx24(Ca32). The present structure reveals an unusual sulfur cluster formed by two cysteines and a methionine in domains II and III, respectively. While both cysteines adopt the reduced thiolate forms and are separated by a distance of about 5.5 A, the sulfur atom of the methionine residue is in their close vicinity and apparently interacts with both cysteine sulfur atoms. While the cysteine residues are conserved in at least five plant annexins and in several mammalian members of the annexin family of proteins, the methionine residue is conserved only in three plant proteins. Several of these annexins carrying the conserved residues have been implicated in oxidative stress response. We therefore hypothesize that the cysteine motif found in the present structure, or possibly even the entire sulfur cluster, forms the molecular basis for annexin function in oxidative stress response.  相似文献   

3.
Isas JM  Kim YE  Jao CC  Hegde PB  Haigler HT  Langen R 《Biochemistry》2005,44(50):16435-16444
Annexins are a family of soluble proteins that can undergo reversible Ca(2+)-dependent interaction with the interfacial region of phospholipid membranes. The helical hairpins on the convex face of the crystal structure of soluble annexins are proposed to mediate binding to membranes, but the mechanism is not defined. For this study, we used a site-directed spin labeling (SDSL) experimental approach to investigate Ca(2+) and membrane-induced structural and dynamic changes that occurred in the helical hairpins encompassing three of the four D and E helices of annexin B12. Electron paramagnetic resonance (EPR) parameters were analyzed for the soluble and Ca(2+)-dependent membrane-bound states of the following nitroxide scans of annexin B12: a continuous 24-residue scan of the D and E helices in the third repeat (residues 219-242) and short scans encompassing the D-E loop regions of the first repeat (residues 68-74) and the fourth repeat (300-305). EPR mobility and accessibility parameters of most sites were similar when the protein was in solution or in the membrane-bound state, and both sets of data were consistent with the crystal structure of the protein. However, membrane-induced changes in mobility and accessibility were observed in all three loop regions, with the most dramatic changes noted at sites corresponding to the highly conserved serine and glycine residues in the loops. EPR accessibility parameters clearly established that nitroxide side chains placed at these sites made direct contact with the bilayer. EPR mobility parameters showed that these sites were very mobile in solution, but immobilized on the EPR time scale in the membrane-bound state. Since the headgroup regions of bilayer phospholipids are relatively mobile in the absence of annexins, Ca(2+)-dependent binding of annexin B12 appears to form a complex in which the mobility of the D-E loop region of the protein and the headgroup region of the phospholipid are highly constrained. Possible biological consequences of annexin-induced restriction of membrane mobility are discussed.  相似文献   

4.
The oligomeric state in solution of four plant annexins, namely Anx23(Ca38), Anx24(Ca32), Anx(Gh1), and Anx(Gh2), was characterized by sedimentation equilibrium analysis and gel filtration. All proteins were expressed and purified as amino-terminal His(n) fusions. Sequencing of the Anx(Gh1) construct revealed distinct differences with the published sequence. Sedimentation equilibrium analysis of Anx23(Ca38), Anx24(Ca32), and Anx(Gh1) suggests monomer-trimer equilibria for each protein with association constants in the range of 0.9 x 10(10)-1.7 x 10(11) M(-2). All four proteins were subjected to analytical gel filtration under different buffer conditions. Observations from this experiment series agree quantitatively with the ultracentrifugation results, and strongly suggest calcium independence of the annexin oligomerization behavior; moreover, binding of calcium ions to the proteins seems to require disassembly of the oligomers. Anx(Gh2) showed a different elution profile than the other plant annexins; while having only a very small trimer content, this annexin seems to exist in a monomer-dimer equilibrium in solution.  相似文献   

5.
Alpha-giardins constitute the annexin proteome (group E annexins) in the intestinal protozoan parasite Giardia and, as such, represent the evolutionary oldest eukaryotic annexins. The dominance of alpha-giardins in the cytoskeleton of Giardia with its greatly reduced actin content emphasises the importance of the alpha-giardins for the structural integrity of the parasite, which is particularly critical in the transformation stage between cyst and trophozoite. In this study, we report the crystal structures of the apo- and calcium-bound forms of α1-giardin, a protein localised to the plasma membrane of Giardia trophozoites that has recently been identified as a vaccine target. The calcium-bound crystal structure of α1-giardin revealed the presence of a type III site in the first repeat as known from other annexin structures, as well as a novel calcium binding site situated between repeats I and IV. By means of comparison, the crystal structures of three different alpha-giardins known to date indicate that these proteins engage different calcium coordination schemes, among each other, as well as compared to annexins of groups A-D. Evaluation of the calcium-dependent binding to acidic phosphoplipid membranes revealed that this process is not only mediated but also regulated by the environmental calcium concentration. Uniquely within the large family of annexins, α1-giardin disengages from the phospholipid membrane at high calcium concentrations possibly due to formation of a dimeric species. The observed behaviour is in line with changing calcium levels experienced by the parasite during excystation and may thus provide first insights into the molecular mechanisms underpinning the transformation and survival of the parasite in the host.  相似文献   

6.
Annexins and S100 proteins represent two large, but distinct, calcium-binding protein families. Annexins are made up of a highly alpha-helical core domain that binds calcium ions, allowing them to interact with phospholipid membranes. Furthermore, some annexins, such as annexins A1 and A2, contain an N-terminal region that is expelled from the core domain on calcium binding. These events allow for the interaction of the annexin N-terminus with target proteins, such as S100. In addition, when an S100 protein binds calcium ions, it undergoes a structural reorientation of its helices, exposing a hydrophobic patch capable of interacting with its targets, including the N-terminal sequences of annexins. Structural studies of the complexes between members of these two families have revealed valuable details regarding the mechanisms of the interactions, including the binding surfaces and conformation of the annexin N-terminus. However, other S100-annexin interactions, such as those between S100A11 and annexin A6, or between dicalcin and annexins A1, A2 and A5, appear to be more complicated, involving the annexin core region, perhaps in concert with the N-terminus. The diversity of these interactions indicates that multiple forms of recognition exist between S100 proteins and annexins. S100-annexin interactions have been suggested to play a role in membrane fusion events by the bridging together of two annexin proteins, bound to phospholipid membranes, by an S100 protein. The structures and differential interactions of S100-annexin complexes may indicate that this process has several possible modes of protein-protein recognition.  相似文献   

7.
Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage.  相似文献   

8.
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.  相似文献   

9.
The annexins   总被引:3,自引:0,他引:3  
Annexins are traditionally thought of as calcium-dependent phospholipid-binding proteins, but recent work suggests a more complex set of functions. More than a thousand proteins of the annexin superfamily have been identified in major eukaryotic phyla, but annexins are absent from yeasts and prokaryotes. The unique annexin core domain is made up of four similar repeats approximately 70 amino acids long, each of which usually contains a characteristic 'type 2' motif for binding calcium ions. Animal and fungal annexins also have non-homologous amino-terminal domains of varying length and sequence, which are responsible for the distinct localizations and specialized functions of the proteins through post-translational modification and binding to other proteins. Annexins interact with various cell-membrane components that are involved in the structural organization of the cell, intracellular signaling by enzyme modulation and ion fluxes, growth control, and they can act as atypical calcium channels. Analysis of site-specific conservation in the core domain suggests a role for certain buried residues in the calcium-channel activity of vertebrate annexins and in the structural stability of their core domains. Evolutionarily significant differences between subfamilies are preferentially localized to accessible sites on the protein surface that determine membrane binding and interactions with cytosolic proteins.  相似文献   

10.
Annexins are calcium‐dependent phospholipid‐binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N‐terminus as truncation of the N‐terminus of chicken annexin A5 significantly decreases this process and replacement of the N‐terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N‐terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium‐dependent membrane aggregation.  相似文献   

11.
Annexins are a family of proteins generally described as Ca(2+)-dependent for phospholipid binding. Yet, annexins have a wide variety of binding behaviors and conformational states, some of which are lipid-dependent and Ca(2+)-independent. We present a model that captures the cation and phospholipid binding behavior of the highly conserved core of the annexins. Experimental data for annexins A4 and A5, which have short N-termini, were globally modeled to gain an understanding of how the lipid-binding affinity of the conserved protein core is modulated. Analysis of the binding behavior was achieved through use of the lanthanide Tb(3+) as a Ca(2+) analogue. Binding isotherms were determined experimentally from the quenching of the intrinsic fluorescence of annexins A4 and A5 by Tb(3+) in the presence or absence of membranes. In the presence of lipid, the affinity of annexin for cation increases, and the binding isotherms change from hyperbolic to weakly sigmoidal. This behavior was modeled by isotherms derived from microscopic binding partition functions. The change from hyperbolic to sigmoidal binding occurs because of an allosteric transition from the annexin solution state to its membrane-associated state. Protein binding to lipid bilayers renders cation binding by annexins cooperative. The two annexin states denote two affinities of the protein for cation, one in the absence and another in the presence of membrane. In the framework of this model, we discuss membrane binding as well as the influence of the N-terminus in modifying the annexin cation-binding affinity by changing the probability of the protein to undergo the postulated two-state transition.  相似文献   

12.
The calcium binding properties of annexin I as observed by thermodynamic DSC studies have been compared to the structural information obtained from X-ray investigation. The calorimetric experiment permitted to evaluate both the reaction scheme - including binding of ligand and conformational changes - and the energetics of each reaction step. According to published X-ray data Annexin I has six calcium binding sites, three medium-affinity type II and three low-affinity type III sites.The present study shows that at 37 degrees C annexin I binds in a Hill type fashion simultaneously two calcium ions in a first step with medium affinity at a concentration of 0.6 mM and another three Ca(2+) ions again cooperatively at 30 mM with low affinity. Therefore it can be concluded that only two medium-affinity type II binding sites are available. The third site, that should be accessible in principle appears to be masked presumably due to the presence of the N terminus. In view of the large calcium concentration needed for saturation of the binding sites, annexin I may be expected to be Ca(2+) free in vivo unless other processes such as membrane interaction occur simultaneously. This assumption is consistent with the finding, that the affinity of annexins to calcium is usually markedly increased by the presence of lipids.  相似文献   

13.
Annexins are structurally related proteins that bind phospholipids in a Ca2(+)-dependent manner and possess at least four conserved 70-amino acid repeat domains. The ability of certain annexins to promote contact between vesicle membranes in vitro has prompted the suggestion that these proteins regulate membrane traffic in exocytosis. We have previously found that annexins I and II promote contact between vesicles whereas annexin V does not. In order to understand the mechanism of annexin I-mediated vesicle-vesicle contact, we prepared a monoclonal antibody that specifically inhibits annexin I-mediated vesicle aggregation. We identified the domain of annexin I recognized by this monoclonal antibody by using it to screen an expression library containing random fragments of annexin I cDNA. The antibody identified a fragment encoding amino acids 41-118 (the first repeat plus 8 residues of the amino-terminal tail). We constructed a chimeric protein containing these amino acids of annexin I fused to the second, third, and fourth repeats of annexin V. Transfer of this domain conferred the ability to promote vesicle aggregation, confirming that this domain participates directly in mediating contact between vesicle membranes.  相似文献   

14.
Crystal structures of annexin V have shown up to 10 bound calcium ions in three different types of binding sites, but previous work concluded that only one of these sites accounted for nearly all of the membrane binding affinity of the molecule. In this study we mutated residues contributing to potential calcium binding sites in the AB and B helices in each of the four domains (eight sites in total) and in DE helices in the first, second, and third domains (three sites in total). We measured the affinity of each protein for phospholipid vesicles and cell membranes by quantitative calcium titration under low occupancy conditions (< 1% saturation of available membrane binding sites). Affinity was calculated from the midpoint and slope of the calcium titration curve and the concentration of membrane binding sites. The results showed that all four AB sites were essential for high affinity binding, as were three of the four B sites (in domains 1, 2, and 3); the DE site in the first domain made a slight contribution to affinity. Multisite mutants showed that each domain contributed additively and independently to binding affinity; in contrast, AB and B sites within the same domain were interdependent. The number of functionally important sites identified was consistent with the Hill coefficient observed in calcium titrations. This study shows an essential and previously unappreciated role for B-helix calcium binding sites in the membrane binding of annexins and indicates that all four domains of the molecule are required for maximum membrane binding affinity.  相似文献   

15.
Site-directed mutagenesis was employed to map and characterize Ca(2+)-binding sites in annexin II, a member of the annexin family of Ca(2+)- and phospholipid-binding proteins which serves as a major cellular substrate for the tyrosine kinase encoded by the src oncogene. Several single amino acid substitutions were introduced in the human annexin II and the various mutant proteins were scored for their affinity towards Ca2+ in different assays. The data support our previous finding [Thiel, C., Weber, K. and Gerke V. (1991) J. Biol. Chem. 266, 14,732-14,739] that a Ca(2+)-binding site is present in the third of the four repeat segments which comprise the 33-kDa protein core of annexin II. In addition to Gly206 and Thr207, which are localized in the highly conserved endonexin fold of the third repeat, Glu246 is involved in the formation of this site. Thus the architecture of this Ca(2+)-binding site in solution is very similar, if not identical, to that of Ca2+ sites identified recently in annexin V crystals [Huber, R., Schneider, M., Mayr, I., R?misch, J. and Paques, E.-P. (1990) FEBS Lett. 275, 15-21]. In addition to the site in repeat 3, we have mapped sites of presumably similar architecture in repeats 2 and 4 of annexin II. Again, an acidic amino acid which is located 40 residues C-terminal to the conserved glycine at position 4 of the endonexin fold is indispensable for high-affinity Ca2+ binding: Asp161 in the second and Asp321 in the fourth repeat. In contrast, repeat 1 does not contain an acidic amino acid at a corresponding position and also shows deviations from the other repeats in the sequence surrounding the conserved glycine. These results on annexin II together with the crystallographic information on annexin V reveal that annexins can differ in the position of the Ca2+ sites. Ca(2+)-binding sites of similar structure are present in repeats 2, 3, and 4 of annexin II while in annexin V they occur in repeats 1, 2, and 4. We also synthesized an annexin II derivative with mutations in all three Ca2+ sites. This molecule shows a greatly reduced affinity for the divalent cation. However, it is still able to bind Ca2+, indicating the presence of (an) additional Ca2+ site(s) of presumably different architecture.  相似文献   

16.
The structure of annexin V, crystallised in the presence of two calcium or barium ions for each protein molecule, was solved by molecular replacement to 0.24 nm resolution. The two metal ions are found in domains I and IV, i.e. on the same side of the channel that lies in the centre of the molecule. The structures of the barium and calcium form are extremely close, the only differences localised in the metal-binding sites that lie on the surface of the molecule. The occupancies of the metal ions, however, are lower for barium than for calcium, expressing the lower affinity of the protein for the former. The packing of the annexin molecules in the crystal asymmetric unit may represent a model for the calcium driven association of membrane-bound annexins that leads to membrane fusion.  相似文献   

17.
Winter A  Yusof AM  Gao E  Yan HL  Sun SH  Hofmann A 《The FEBS journal》2006,273(14):3238-3247
Annexin B1 from Cysticercus cellulosae has recently been identified using immunological screening in an attempt to find novel antigens for vaccine development against cysticercosis. The protein possesses anticoagulant activity and carries significant therapeutic potential due to its thrombus-targeting and thrombolytic properties. We investigated the biochemical properties of annexin B1 using liposome and heparin Sepharose copelleting assays, as well as CD spectroscopy. The calcium-dependent binding to acidic phospholipid membranes is reminiscent of other mammalian annexins with a clear preference for high phosphatidylserine content. A unique property of annexin B1 is its ability to bind to liposomes with high phosphatidylserine content in the absence of calcium, which might be due to the presence of several basic residues on the convex protein surface that harbours the membrane-binding loops. Annexin B1 demonstrates lectin properties and binds to heparin Sepharose in a cooperative, calcium-dependent manner. Although this binding is reversible to a large extent, a small fraction of the protein remains bound to the glycosaminoglycan even in the presence of high concentrations of EDTA. Analogous to annexin A5, we propose a model of heparin wrapped around the protein thereby engaging in calcium-dependent and calcium-independent interactions. Although the calcium-independent heparin-binding sites identified in annexin A5 are not conserved, we hypothesize three possible sites in annexin B1. Results from CD spectroscopy and thermal denaturation indicate that, in solution, the protein binds calcium with a low affinity that leads to a slight increase in folding stability.  相似文献   

18.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

19.
Annexins play critical roles in membrane organization, membrane trafficking and vesicle transport. The family members share the ability to bind to membranes with high affinities, but the interactions between annexins and membranes remain unclear. Here, using long‐time molecular dynamics simulations, we provide detailed information for the binding of an annexin V trimer to a POPC/POPS lipid bilayer. Calcium ions function as bridges between several negatively charged residues of annexin V and the oxygen atoms of lipids. The preferred calcium‐bridges are those formed via the carboxyl oxygen atoms of POPS lipids. H‐bonds and hydrophobic interactions formed by several critical residues have also been observed in the annexin‐membrane interface. The annexin‐membrane binding causes small changes of annexin trimer structures, while has significant effects on lipid bilayer structures. The lipid bilayer shows a bent shape and forms a concave region in the annexin‐membrane interaction interface, which provides an atomic‐level evidence to support the view that annexins could disturb the stability of lipids and bend membranes. This study provides insights into the commonly occurring PS‐dependent and calcium‐dependent binding of proteins to membranes. Proteins 2014; 82:312–322. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Structure of soluble and membrane-bound human annexin V.   总被引:5,自引:0,他引:5  
Annexins are a family of water-soluble proteins that bind to membranes in a calcium-dependent manner. Some members have been shown to exhibit voltage-dependent calcium channel activity, a property characteristic of integral membrane proteins. The structures of human annexin V in crystals obtained from aqueous solution and in two-dimensional crystals when bound to phospholipid layers have been determined by X-ray and electron crystallography, respectively. They are compared here. Both structures show close correspondence, suggesting that annexins attach to phospholipid membranes without substantial structural change. These observations, together with biochemical data, lead to the conclusion that annexin V interacts with phospholipid membranes with its convex face. We propose that binding is mediated by direct interaction between the phosphoryl headgroups and the calcium bound to polypeptide loops protruding from the convex face. The membrane area covered by annexin may thus become disordered and permeable allowing calcium flux through the membrane and the central channel-like structure found in annexin molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号