首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Telethonin protein expression in neuromuscular disorders   总被引:4,自引:0,他引:4  
Telethonin is a 19-kDa sarcomeric protein, localized to the Z-disc of skeletal and cardiac muscles. Mutations in the telethonin gene cause limb-girdle muscular dystrophy type 2G (LGMD2G).We investigated the sarcomeric integrity of muscle fibers in LGMD2G patients, through double immunofluorescence analysis for telethonin with three sarcomeric proteins: titin, alpha-actinin-2, and myotilin and observed the typical cross striation pattern, suggesting that the Z-line of the sarcomere is apparently preserved, despite the absence of telethonin. Ultrastructural analysis confirmed the integrity of the sarcomeric architecture. The possible interaction of telethonin with other proteins responsible for several forms of neuromuscular disorders was also analyzed. Telethonin was clearly present in the rods in nemaline myopathy (NM) muscle fibers, confirming its localization to the Z-line of the sarcomere. Muscle from patients with absent telethonin showed normal expression for the proteins dystrophin, sarcoglycans, dysferlin, and calpain-3. Additionally, telethonin showed normal localization in muscle biopsies from patients with LGMD2A, LGMD2B, sarcoglycanopathies, and Duchenne muscular dystrophy (DMD). Therefore, the primary deficiency of calpain-3, dysferlin, sarcoglycans, and dystrophin do not seem to alter telethonin expression.  相似文献   

3.
Telethonin (also known as titin-cap or t-cap) is a muscle-specific protein whose mutation is associated with cardiac and skeletal myopathies through unknown mechanisms. Our previous work identified cardiac telethonin as an interaction partner for the protein kinase D catalytic domain. In this study, kinase assays used in conjunction with MS and site-directed mutagenesis confirmed telethonin as a substrate for protein kinase D and Ca2+/calmodulin-dependent kinase II in vitro and identified Ser-157 and Ser-161 as the phosphorylation sites. Phosphate affinity electrophoresis and MS revealed endogenous telethonin to exist in a constitutively bis-phosphorylated form in isolated adult rat ventricular myocytes and in mouse and rat ventricular myocardium. Following heterologous expression in myocytes by adenoviral gene transfer, wild-type telethonin became bis-phosphorylated, whereas S157A/S161A telethonin remained non-phosphorylated. Nevertheless, both proteins localized predominantly to the sarcomeric Z-disc, where they partially replaced endogenous telethonin. Such partial replacement with S157A/S161A telethonin disrupted transverse tubule organization and prolonged the time to peak of the intracellular Ca2+ transient and increased its variance. These data reveal, for the first time, that cardiac telethonin is constitutively bis-phosphorylated and suggest that such phosphorylation is critical for normal telethonin function, which may include maintenance of transverse tubule organization and intracellular Ca2+ transients.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
The Z-disk region defines the lateral boundary of the sarcomere and requires a high level of mechanical strength to provide a stable framework for large filamentous muscle proteins. The level of complexity at this area is reflected by a large number of protein-protein interactions. Recently, we unraveled how the N-terminus of the longest filament component, the giant muscle protein titin, is assembled into an antiparallel (2:1) sandwich complex by the N-terminal titin-binding segment of the Z-disk ligand telethonin/T-cap [Zou, P., Pinotsis, N., Lange, S., Song, Y.H., Popov, A., Mavridis, I., Mayans, O.M., Gautel, M., Wilmanns, M., 2006. Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439, 229-233]. In this contribution, we present structural data of a related complex of the titin N-terminus with full-length telethonin. The C-terminus of telethonin remains invisible, suggesting that it does not fold into a defined structure even in the presence of titin. In contrast to the structure with truncated telethonin, a dimer of two titin/telethonin complexes is formed within the crystal environment, potentially indicating the formation of higher oligomers. We further investigated the structure and dynamics of this assembly by small-angle X-ray scattering, circular dichroism, and in vivo complementation data. The data consistently indicate the involvement of the C-terminal part of telethonin into the assembly of two titin/telethonin complexes.  相似文献   

13.
14.
15.
16.
The Z-disc is a highly specialized multiprotein complex of striated muscles that serves as the interface of the sarcomere and the cytoskeleton. In addition to its role in muscle contraction, its juxtaposition to the plasma membrane suggests additional functions of the Z-disc in sensing and transmitting external and internal signals. Recently, we described two novel striated muscle-specific proteins, calsarcin-1 and calsarcin-2, that bind alpha-actinin on the Z-disc and serve as intracellular binding proteins for calcineurin, a calcium/calmodulin-dependent phosphatase shown to be integral in cardiac hypertrophy as well as skeletal muscle differentiation and fiber-type specification. Here, we describe an additional member of the calsarcin family, calsarcin-3, which is expressed specifically in skeletal muscle and is enriched in fast-twitch muscle fibers. Like calsarcin-1 and calsarcin-2, calsarcin-3 interacts with calcineurin, and the Z-disc proteins alpha-actinin, gamma-filamin, and telethonin. In addition, we show that calsarcins interact with the PDZ-LIM domain protein ZASP/Cypher/Oracle, which also localizes to the Z-disc. Calsarcins represent a novel family of sarcomeric proteins that serve as focal points for the interactions of an array of proteins involved in Z-disc structure and signal transduction in striated muscle.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号