首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microzooplankton grazing and community structure were investigatedin the austral summer of 1995 during a Southern Ocean Drogueand Ocean Flux Study (SODOFS) at the ice-edge zone of the LazarevSea. Grazing was estimated at the surface chlorophyll maximum(5–10 m) by employing the sequential dilution technique.Chlorophyll a concentrations were dominated by chainformingmicrophytoplankton (>20 µm) of the genera Chaetocerosand Nitzschia. Microzooplankton were numerically dominated byaloricate ciliates and dinoflagellates (Protoperidinium sp.,Amphisoleta sp. and Gymnodinium sp.). Instantaneous growth ratesof nanophytoplankton (<20 µm) varied between 0.019and 0.080 day–1, equivalent to between 0.03 and 0.12 chlorophylldoublings day–1. Instantaneous grazing rates of microzooplanktonon nanophytoplankton varied from 0.012 to 0.052 day–1.This corresponds to a nanophytoplankton daily loss of between1.3 and 7.0% (mean = 3.76%) of the initial standing stock, andbetween 45 and 97% (mean = 70.37%) of the daily potential production.Growth rates of microphytoplankton (>20 µm) were lower,varying between 0.011 and 0.070 day–1, equivalent to 0.015–0.097chlorophyll doublings day–1. At only three of the 10 stationsdid grazing by microzooplankton result in a decrease in microphytoplanktonconcentration. At these stations instantaneous grazing ratesof microzooplankton on microphytoplankton ranged between 0.009and 0.015 day–1, equivalent to a daily loss of <1.56%(mean = 1.11%) of initial standing stock and <40% (mean =28.55%) of the potential production. Time series grazing experimentsconducted at 6 h intervals did not show any diel patterns ofgrazing by microzooplankton. Our data show that microzooplanktongrazing at the ice edge were not sufficient to prevent chlorophylla accumulation in regions dominated by rnicrophytoplankton.Here, the major biological routes for the uptake of carbon thereforeappear to be grazing by metazoans or the sedimentation of phytoplanktoncells. Under these conditions, the biological pump will be relativelyefficient in the drawdown of atmospheric CO2.  相似文献   

2.
This study seeks to determine the effects of local hydrography on the distribution, abundance and feeding of chaetognaths in the Lazarev Sea, an area strongly controlled by physical processes which has been held responsible for initiating the Weddell Polynya. Zooplankton samples were taken at 39 stations on four transects located between 6°W and 3°E and from 60°S to 70°S between surface and 350 m. The dominant species, Eukrohnia hamata, accounted for 86.5% of all chaetognaths, followed by Sagitta gazellae (8.1%) and Sagitta marri (5.4%). These three species showed distinct vertical and horizontal distribution patterns. While E. hamata and S. marri had maximum abundances below 250 m depth, S. gazellae showed a narrow distribution band in the upper 150 m depth. The distribution pattern was strongly modified at the Greenwich meridian with an upward transport of a high abundance of deep dwelling organisms (S. marri and E. hamata) and a displacement of S. gazellae to the surface, likely coupled with the rise of the warm, saline halo around the Maud Rise. Small copepods were the main prey of all three chaetognath species. Feeding rates (FR) varied among species and depth. Sagitta marri showed the highest FR with 0.38 prey d−1, followed by S. gazellae and E. hamata (0.22 and 0.07 prey d−1). Feeding rates were usually highest in the 25–80-m stratum. Size distribution and maturity of E. hamata revealed a dominance of small and immature organisms along all depths and stations, suggesting that this area might be acting as an important source of recently spawned organisms to the surface.  相似文献   

3.
Living calcareous nannoplankton in the region between Australia and Antarctica are distributed in five assemblages associated with distinct physico-chemical properties of surface and subsurface water masses. Temperature and salinity ranges for living assemblages were 2–15.7°C and 33.7–35.56‰, respectively, with maximum cell densities for austral summer 1994 found at 9.63°C and 34.44‰, and for austral summer 1995 at 12.8°C and 35.17‰. Nutrients (phosphate, silicate and nitrate) increase poleward and vertically from surface to depth. Abundance and diversity of calcareous nannoplankton decrease in a poleward direction with major shifts located across both the Subtropical and the Subantarctic Fronts. Higher cell densities were found below 50 m equatorward of the Subtropical Front and above 50 m poleward of this front. Poleward of the Antarctic Divergence coccolithophores are absent from all samples. Three different morphotypes of Emiliania huxleyi were identified, one of which has a distribution associated with the Subtropical Front. Of the subordinate species Syracosphaera spp, Calciosolenia murrayi and Umbellosphaera tenuis dominate equatorward of the Subtropical Front with Syracosphaera spp and Calcidiscus leptoporus dominant poleward of this front. A peculiar community of weakly calcified species is recorded for the first time outside the Weddell Sea.  相似文献   

4.
During the austral summer of 1995, distributions of phytoplankton biomass (as chlorophyll a), primary production, and nutrient concentrations along two north-south transects in the marginal ice zone of the northwestern Weddell Sea were examined as part of the 8th Korean Antarctic Research Program. An extensive phytoplankton bloom, ranging from 1.6 to 11.2 mg m−3 in surface chlorophyll a concentration, was encountered along the eastern transect and extended ca. 180 km north of the ice edge. The spatial extent of the bloom was closely related to the density field induced by the input of meltwater from the retreating sea ice. However, the extent (ca. 200 km) of the phytoplankton bloom along the western transect exceeded the meltwater-influenced zone (ca. 18 km). The extensive bloom along the western transect was more closely related to local hydrography than to the proximity of the ice edge and the resulting meltwater-induced stability of the upper water column. In addition, the marginal ice zone on the western transect was characterized by a deep, high phytoplankton biomass (up to 8 mg Chl a m−3) extending to 100-m depth, and the decreased nutrient concentration, which was probably caused by passive sinking from the upper euphotic zone and in situ growth. Despite the low bloom intensity relative to the marginal ice zone in both of the transects, mean primary productivity (2.6 g C m−2 day−1) in shelf waters corresponding to the northern side of the western transect was as high as in the marginal ice zone (2.1 g C m−2 day−1), and was 4.8 times greater than that in open waters, suggesting that shelf waters are as highly productive as the marginal ice zone. A comparison between the historical productivity data and our data also shows that the most productive regions in the Southern Ocean are shelf waters and the marginal ice zone, with emerging evidence of frontal regions as another major productive site. Accepted: 27 September 1998  相似文献   

5.
Phytoplankton population dynamics play an important role in biogeochemical cycles in the Southern Ocean during austral summer. However, the relationship between phytoplankton community composition and primary productivity remains elusive in this region. We investigated the community composition and photosynthetic physiology of surface phytoplankton assemblages in the Australian sector of the Southern Ocean from December 2010 to January 2011. There were significant latitudinal variations in hydrographic and biological parameters along 110°E and 140°E. Surface (5 m) chlorophyll a (chl a) concentrations measured with high-performance liquid chromatography varied between 0.18 and 0.99 mg m?3. The diatom contribution to the surface chl a biomass increased in the south, as estimated with algal chemotaxonomic pigment markers, while the contributions of haptophytes and chlorophytes decreased. In our photosynthesis–irradiance (PE) curve experiment, the maximum photosynthetic rate normalized to chl a ( \(P_{ \hbox{max} }^{*}\) ), initial slope (α *), the maximum quantum yield of carbon fixation (Φ c max), and the photoinhibition index (β *) were higher in the region where diatoms contributed >50 % to the chl a biomass. In addition, there were statistically significant correlations between the diatom contribution to the chl a biomass and the PE parameters. These results suggested that the changes in the phytoplankton community composition, primarily in diatoms, could strongly affect photosynthetic physiology in the Australian sector of the Southern Ocean.  相似文献   

6.
Microzooplankton grazing was investigated in surface waters of the Indo-Pacific and Atlantic sectors of the Southern Ocean by the dilution method. Phytoplankton growth varied mainly between 0.1 and 0.4 day−1, and microzooplankton grazing between 0.0 and 0.3 day−1. Great fluctuations in phytoplankton growth rate were observed at one station within 3 weeks and between closely spaced stations. Microzooplankton grazing rates were similar to phytoplankton growth rate despite the variation of phytoplankton growth rates, although in some cases, phytoplankton growth overwhelmed microzooplankton grazing. These observations suggest that microzooplankton are the main consumers of primary producers, and that steady state between phytoplankton growth and microzooplankton grazing is usually established in the Southern Ocean in austral summer. Received: 5 November 1996 / Accepted: 4 March 1997  相似文献   

7.
Depth-stratified vertical sampling was carried out during the New Zealand International Polar Year cruise to the Ross Sea on board the RV Tangaroa in February–March 2008. The distribution (horizontal and vertical), density and population biology of Salpa thompsoni were investigated. Salps were found at two of the four major sampling locations, e.g. near the continental slope of the Ross Sea and in the vicinity of seamounts to the north of the Ross Sea. Both abundance and biomass of S. thompsoni were highest near the seamounts in the Antarctic Circumpolar Current reaching ~2,500 ind 1,000 m−3 and 8.2 g dry wt 1,000 m−3 in the water column sampled. The data showed that S. thompsoni populations were able to utilize horizontal and vertical discontinuities in water column structure, in particular the warm Circumpolar Deep Water (CDW), to persist in the high Antarctic. Although salps appeared to continue migrating to the surface colder layers to feed, both aggregate chain and young embryo release seem to be restricted to the CDW. This study for the first time has provided evidence that low Antarctic salp species may successfully reproduce in the hostile high Antarctic realm.  相似文献   

8.
Knowledge about the protist diversity of the Pacific sector of the Southern Ocean is scarce. We tested the hypothesis that distinct protist community assemblages characterize large-scale water masses. Therefore, we determined the composition and biogeography of late summer protist assemblages along a transect from the coast of New Zealand to the eastern Ross Sea. We used state of the art molecular approaches, such as automated ribosomal intergenic spacer analysis and 454-pyrosequencing, combined with high-performance liquid chromatography pigment analysis to study the protist assemblage. We found distinct biogeographic patterns defined by the environmental conditions in the particular region. Different water masses harbored different microbial communities. In contrast to the Arctic Ocean, picoeukaryotes had minor importance throughout the investigated transect and showed very low contribution south of the Polar Front. Dinoflagellates, Syndiniales, and small stramenopiles were dominating the sequence assemblage in the Subantarctic Zone, whereas the relative abundance of diatoms increased southwards, in the Polar Frontal Zone and Antarctic Zone. South of the Polar Front, most sequences belonged to haptophytes. This study delivers a comprehensive and taxon detailed overview of the protist composition in the investigated area during the austral summer 2010.  相似文献   

9.
In spring 1994, within the ROSSMIZE research project, combined measurements of nitrogen (15N) and carbon (14C) uptake were made in the Ross Sea, passing from the McMurdo polynya to the ice-covered area in the north, in order to study the effect of environmental conditions (light availability, ice cover, vertical stability) on the coupling of N and C cycles. Nitrogen (nitrate and ammonium) and carbon uptakes were measured under simulated in situ conditions. The obtained results revealed, in most situations, much higher C:N uptake ratios than the Redfield ratio for phytoplankton composition; only in the inner part of the pack ice C:N uptake was lower than the balanced composition ratio. The high uptake ratios are ascribed to a larger C requirement during early phases of bloom evolution and to a greater importance of nitrogen sources, such as urea and other dissolved organic compounds, which were not measured in this study. In contrast, the lower C:N ratios in most of the pack-ice environment are ascribed to reduced photosynthesis in comparison to nutrient assimilation at low irradiances and to an increased importance of bacterial processes. Accepted: 3 January 2000  相似文献   

10.
Microphytoplankton distribution in the Atlantic sector of theSouthern Ocean was investigated along a transect during theSAAMES II cruise undertaken in late austral summer (January/February) 1993. Samples were collected at 60 km intervals between34 and 70°S for the analysis of mineral nutrients, and theidentification and enumeration of microphytoplankton. Peaksin microphytoplankton abundance were recorded in the neriticwaters of Africa and Antarctica, at all major oceanic fronts,and in the marginal ice zone (MIZ). Partial correlation analysisindicated that 45% of the total variance associated with microphytoplanktonabundance could be explained by silicate and phosphate concentrations,while temperature accounted for 65% (P<0.001). Cluster andordination analyses identified two major groups of stations,one north and one south of the Subantarctic Front (SAF). Thisdivision appears to be related to differences in temperatureand silicate concentrations. Each region comprised distinctmicrophytoplankton subgroups associated with specific watermasses or hydrological features. Indicator species could beidentified for some water masses. In the MIZ, microphytoplanktonspecies composition and succession were strongly affected bysea-ice throughout the summer.  相似文献   

11.
Horizontal distributions of coccolithophores were observed in sea surface water samples collected on the RV Polarstern between 27 February and 10 April, 2001, in the Pacific sector of the Southern Ocean (Bellingshausen and Amundsen Seas). These samples were analyzed to gain information about the distribution of coccolithophores in relation to the oceanic fronts of the Southern Ocean. A total of fifteen species of coccolithophores were identified, showing cell abundances of up to 67 × 103 cells/l down to 63°S. Emiliania huxleyi was the most abundant taxon, always accounting for more than 85% of the assemblage. The second most abundant species was Calcidiscus leptoporus, with values lower than 7%. Cell density increases significantly in both the Subantarctic and Polar Fronts (155 and 151 × 103 cells/l, respectively), decreasing abruptly in the intervening Polar Frontal Zone and to the south of the Polar Front. Although temperature at high latitudes is the main factor controlling the biogeographical distribution of coccolithophores, at the regional level (Southern Ocean) the frontal systems, and consequently nutrient distribution, play a crucial role.  相似文献   

12.
Phytoplankton biomass and productivity were measured during two cruises in the Bransfield Strait in December 1991 (D91) and January/February 1993 (J93). Strong seasonal variability in productivity values was observed due to differences in the physiological response of phytoplankton. However, although the photosynthetic capacity of phytoplankton was markedly lower in D91 [P m B =0.61 ± 0.25 mg C (mg Chla)−1 h−1] than in J93 [P m B =2.18 ± 0.91 mg C (mg Chla)−1 h−1], average water column chlorophyll values in different areas of the strait were approximately similar in D91 (49–78 mg Chla m−2) and J93 (22–76 mg Chla m−2). The spatial distribution of chlorophyll was patchy and generally associated with the influence of the different water masses that meet together in the Bransfield Strait. No correlation was found between the mixed layer depth and either the integrated chlorophyll or the productivity. Our results suggest that major phytoplankton blooms in the Bransfield Strait are advected from the nearby Gerlache Strait or Bellingshausen Sea following the main eastward surface currents. Accepted: 5 July 1998  相似文献   

13.
This study documents horizontal distribution and demography of Antarctic krill (Euphausia superba) from the Southern Ocean during January–March 2008. The cruise predominantly occurred in CCAMLR Subarea 48.6, where knowledge about the ecosystem is limited. E. superba were not found north of 52°S. The biomass, estimated from trawl catches, was highest (63.09 g/m2) at a station 680 km southeast of Bouvetøya and at two stations 1,400 and 600 km southeast and southwest of Bouvetøya, 54.67 and 61.38 g/m2, respectively. Body length ranged from 19 to 61 mm (N = 8,538), with a mean of 42.0 ± 6.4 mm (SD). The overall sex ratio was 1:1, 46.2% males (13.2% adults and 33.0% subadults), 46.1% females (33.6% adults and 12.5% subadults), while 7.5% were juveniles. Trawl stations dominated by adults were found west and north of Bouvetøya. Stations with high proportions of subadults and juveniles were mainly found southeast of the island. Four cluster groups were differentiated: analyzing data on krill sex proportions, maturity stages, hydrography, nutrients and chlorophyll concentrations. Two groups represented stations located in the northern part of the study area, where E. superba were absent; water temperatures were higher and the nutrient concentrations lower compared to the groups where E. superba were present. This study shows that bathymetric features like the North Weddell Ridge including Bouvetøya are important for concentrating krill probably due to water mass characteristics and advective processes which influence regional krill demography. The southern regions of CCAMLR sector 48.6 are essential for understanding regional krill recruitment and production.  相似文献   

14.
The horizontal and vertical distributions of fish were examined off Lützow-Holm Bay in the Indian Ocean sector of the Southern Ocean during midnight sun in January 2005. Fish were sampled from six discrete depth layers (0–2,000 m). The most abundant fish in layers from the surface to 200 m were larval stages of Electrona antarctica and Notolepis coatsi. In layers from 200 to 2,000 m, fish assemblages were relatively uniform among all stations and were dominated by E. antarctica (juvenile–subadult), Cyclothone microdon, and Bathylagus antarcticus. Cluster analysis revealed three epipelagic communities related to water temperature and salinity. An ontogenetic habitat shift to deeper layers was apparent for E. antarctica, N. coatsi, and B. antarcticus. Preferences for warm waters were observed in E. antarctica (larvae) and N. coatsi (preflexion to flexion larvae), although they were distributed across a broad range of temperature and salinity in epipelagic zones.  相似文献   

15.
Abstract

Lake Corlo is a dammed reservoir for hydro-electrical purposes in Northern Italy. Weekly samplings were made from May to August 1985 in the euphotic layer. Two major categories, flagellates and diatoms, alternatively dominated the algal community. Flagellates prevailed with stratified conditions. The strong influence of hydraulic conditions on phytoplakton succession is emphasized.  相似文献   

16.
We illustrate the spatial and vertical distribution of sediment phytopigments and organic matter biochemical composition at Terra Nova Bay (Ross Sea) during summer 1995. Coastal sediments displayed high phytopigments concentrations associated with huge amounts of labile organic matter largely dominated by proteins. This result was opposite to previous observations in the same area. Such comparison suggested that whilst organic matter quantity in the sediments depended upon the vertical input from the water column, temporal changes in its biochemical composition were related to benthic processes. As considerably high concentrations of biopolymeric organic carbon were found even at 6-cm depth and according to the “loss type” functioning of the coastal waters of the Ross Sea, we stress the summer time occurrence in coastal sediments of an important organic matter burial. Accepted: 24 October 1999  相似文献   

17.
18.
19.
Trophic cascading resulting from coupling among phytoplankton, protozooplankton (2–200 µm) and the mesozooplankton fractions <1,000 µm and <2,000 µm was investigated at three stations in the Polar Frontal Zone of the Southern Ocean during austral autumn 2002. In the absence of any grazers, net growth rate of the phytoplankton was positive and ranged between 0.209 and 0.402 day–1. Among the heterotrophic components of the zooplankton, protozooplankton were identified as the most important consumers of the phytoplankton biomass. The low impact of the mesozooplankton on the phytoplankton may have been related to the inability of the larger grazers to feed efficiently on the small phytoplankton cells, which dominated the total chlorophyll concentration at two of the three sampling stations. It appears that the mesozooplankton <1,000 µm consumed protozooplankton, which resulted in a decrease in the impact of the latter organisms on the phytoplankton. The presence of predatory zooplankton (mainly chaetognaths and amphipods) >1,000 µm led to a decrease in the carnivory of the <1,000-µm mesozooplankton fraction on the protozooplankton. In this situation, protozooplankton were again able to exert a considerable impact on the phytoplankton.  相似文献   

20.
The sub-ice habitat and fauna in the Laptev Sea and the adjacent Arctic Ocean were investigated during the “Polarstern” cruise ARK XI/1 in summer 1995. At the ice-water interface a thin thermo- and halocline developed at many stations due to melting processes. In the lower centi- to decimetres of the ice, an accumulation of organic matter was found (particulate organic carbon: 1.9 mg l−1, chl a: 3.3 μg l−1) that may have provided a food source for the fauna. The water layer directly beneath the ice was inhabited by high numbers of various nauplii (130–23911 ind. m−3), and two ecological groups, the pelagic sub-ice fauna that originates from the surface water plankton, and the sympagic sub-ice fauna that migrates into this boundary layer from the ice interior. The pelagic fauna dominated the sub-ice community both in terms of species number and abundance. Both groups mainly comprised small copepods (e.g. Oithona similis, Oncaea borealis, Pseudocalanus spp., Halectinosoma spp., Tisbe spp.), but foraminifers and pteropods, for example, also occurred regularly. Diversity was generally low. Factors influencing the composition and abundance of the sub-ice fauna were most likely water depth, salinity and sea-ice sediments. Accepted: 6 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号