首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C.  HUYGHE 《Annals of botany》1991,67(4):429-434
The winter growth of winter white lupin (cv. Lunoble) was investigated.Over three consecutive years, 1987–1989, it was sown atdifferent times at Lusignan (France) and in 1989, at nine differentlocations with various sowing times. The production of primordia,the vernalization requirements and the final number of leaveson the main stem were related to field measurements of dailymaximum and minimum temperatures. A statistical model for the main apex growth with a system oftwo equations was developed, with a threshold level for leafprimordia production at 3 °C. The number of leaf primordiaproduced by a vegetative apex (y) in terms of the cumulativesums of temperature over 3 °C (x) followed the curvilinearregression y = 4.76 + 00268x + 00000156x2. The upper and lowertemperature limits for vernalization were estimated as 14 andI °C respectively. The vernalization requirements of a vegetative apex (y) decreasedwhen the number of initials produced (x) increased accordingto the negative exponential regression y = exp (7.2 + 002626.x). The two equations were used for the prediction of the finalnumber of leaves of a lupin crop. The predictive accuracy ofthe model was checked against independent data. The agreementbetween observed and predicted final leaf number was often close,but some deviations did occur with low leaf number. The modeldescribed most of the growth phenomena which occur during thephase sowing to floral initiation of the main stem of a winterlupin crop, and its possible uses are discussed. Lupinus albus L., white lupin, growth, model, vernalization, primordia, apex, thermal time  相似文献   

2.
This paper outlines a modelling approach which predicts theeffect of both continuous and intermittent low temperature regimeson the final number of leaves in winter wheat. The model takesaccount of the balance between the concurrent processes of leafprimordium initiation and rate of saturation of vernalization,and their response to temperature. The inverse of the time tosaturation of vernalization, at which stage final leaf numberis set, is modelled as a linear function of vernalizing temperature,between 0 and 17 °C. The rate of leaf primordium initiationis modelled using the established linear relationship betweenrate and temperature above 0 °C. Final leaf number is hencethe product of the number of leaf primordia initiated once vernalizationis saturated. In the model, genotypes are characterized by (1)the slope and intercept of the linear response of the rate ofsaturation of vernalization to temperature in the vernalizingrange, and (2) by a development rate towards floral transitionat on-vernalizing temperatures (above 17 °C). The modelis tested against data from experiments where six cultivarsof winter wheat plants of different ages were exposed to a rangeof low temperature regimes, including continuous and intermittentvernalizing temperatures. Overall, the model predicted, withr 2values of 70–90%, the final leaf number across a rangeof six to 21 leaves. Prediction of final leaf number for somecultivars was better in continuous than in intermittent vernalizingregimes. This modelling approach can explain the often-conflictingreports of the effectiveness of different temperatures for vernalization,and the interaction of plant age and vernalization effectiveness. Triticum aestivum L.; wheat; vernalization; rate; temperature; leaf number; modelling; phenology; flowering  相似文献   

3.
HUYGHE  C. 《Annals of botany》1991,67(5):429-434
The winter growth of winter white lupin (cv. Lunoble) was investigated.Over three consecutive years, 1987–1989, it was sown atdifferent times at Lusignan (France) and in 1989, at nine differentlocations with various sowing times. The production of primordia,the vernalization requirements and the final number of leaveson the main stem were related to field measurements of dailymaximum and minimum temperatures. A statistical model for the main apex growth with a system oftwo equations was developed, with a threshold level for leafprimordia production at 3°C. The number of leaf primordiaproduced by a vegetative apex (y) in terms of the cumulativesums of temperature over 3°C (x) followed the curvilinearregression y = 4.76+ 0.0268x + 0000015 6x2. The upper and lowertemperature limits for vernalization were estimated as 14 and1°C respectively. The vernalization requirements of a vegetative apex (y) decreasedwhen the number of initials produced (x) increased accordingto the negative exponential regression y = exp (7.2— 0.02626.x). The two equations were used for the prediction of the finalnumber of leaves of a lupin crop. The predictive accuracy ofthe model was checked against independent data. The agreementbetween observed and predicted final leaf number was often close,but some deviations did occur with low leaf number. The modeldescribed most of the growth phenomena which occur during thephase sowing to floral initiation of the main stem of a winterlupin crop, and its possible uses are discussed Lupinus albus L, white lupin, growth, model, vernalization, primordia, apex, thermal time  相似文献   

4.
Plants of the C4 sedge Cyperus longus L. were grown at 10, 20and 30 °C. An asymptotic growth curve, the Richards function,was fitted to growth data for successive leaves. The mean rateof leaf appearance was a linear function of temperature with0.014 leaves appearing per day for every 1 °C increase intemperature. The instantaneous relative rate of leaf extensionshowed a marked ontogenetic drift which was most rapid at 30°C and slowest at 10 °C. The mean absolute extensionrate for foliage had a temperature coefficient of 0.16 cm d–1° C–1 in the range from 10 to 30 °C. The durationof leaf growth was independent of leaf number at 10 and 20 °Cbut increased linearly with leaf number at 30 °C. The smalldifferences in relative growth rate at the three temperaturesresulted in large differences in foliage area produced at theend of a 30 d growth period. The final foliage areas at 20 and10 °C were 51 and 9% respectively of that at 30 °C. Cyperus longus, temperature, leaf growth, Richards function, growth analysis  相似文献   

5.
The potential for leaf extension of plants of Lolium perennecv S24 growing in small artificial communities under naturalconditions was measured as the plants progressed from the vegetativeto the reproductive state In two consecutive years, 1975 and 1976, ‘simulated swards’were sown in autumn and overwintered in an open, unheated glasshouseIndividual swards from the batch sown in 1975 were brought into a growth room on two occasions in spring 1976 to measuretheir potential for leaf extension at a range of temperatures(5–20 °C) Individual swards from the batch sown inautumn 1976 were brought in to the growth room on 15 occasionsbetween November 1976 and May 1977 and their potential for leafextension was measured at a single temperature of 15 °CFrequent dissections were made in both years to describe changesin the developing apex. The potential for leaf extension at 15 °C decreased fromc 17 mm day–1 in November to c 10 mm day–1 in mid-winter.In January, the potential rapidly increased threefold to reach30mm day–1 by mid February The increase began coincidentwith the earliest stages of floral initiation and was completedby the time of double-ridge formation Spring-grown vegetativeplants, however, showed potential rates of < 20 mm day–1at 15 °C The results are discussed in relation to reproductive developmentand to changes in the carbohydrate strategy of the plants inearly spring Lolium perenne L perennial ryegrass, leaf extension, temperature response  相似文献   

6.
Gorham, J., McDonnell, E., Budrewicz, E. and Wyn Jones, R. G.1985. Salt tolerance in the Triticeae: growth and solute accumulationin leaves of Thinopyrum bessarabicum.—J. exp. Bot. 36:1021–1031. The diploid wheatgrass Thinopyrum bessarabicum was found towithstand prolonged exposure to 350 mol m–3 NaCl in hydroponicculture. During the gradual addition of salt to the externalmedium, osmotic adjustment was rapidly achieved by the accumulationof Na and Cl. Following osmotic adjustment constant leaf Naand Cl concentrations were maintained, and K was retained ata high level. Thinopyrum bessarabicum may be described as anosmoconformer, adjusting its internal osmotic pressure to 400–500mOsmol kg–1 above that of the external medium in hydroponicculture. Both slower shoot initiation and reduced leaf lengthcontributed to the reduced growth rates at higher salinities.Leaf width was not affected. Increasing salinity resulted inincreases in leaf concentrations of phosphate, glycinebetaine,sucrose and proline, and in decreases in the concentrationsof nitrate, sulphate, magnesium, calcium, total amino acidsand organic acids. Thinopyrum bessarabicum exhibits salt tolerancecharacters which may be useful in wheat breeding. Key words: Salt stress, solute accumulation, osmotic adjustment, Thinopyrum  相似文献   

7.
SEIDLOVA  F.; KREKULE  J. 《Annals of botany》1977,41(4):755-762
Kinetin (1•10–4 M and 1•10–3 M) was appliedto the plumules of 6-day-old Chenopodium rubrum plants. Effectson growth, anatomical structure and organogenesis in the apicalmeristem were followed. Floral differentiation as affected bykinetin was also investigated in plants induced to flower byshort-day treatment. Kinetin increased mitotic activity in the apical meristems inboth induced and non-induced plants. The effect was most pronouncedin the peripheral and subcentral zone. An increase in nucleolussize and a higher degree of pyroninophilia in the peripheralzone was also observed, indicating a localized promotion ofRNA synthesis. A higher rate of leaf initiation and a stimulationof leaf and stem growth was subse quentiy recorded. The growthof axillary meristems and of bud primordia was promoted onlyat the lower concentration of kinetin (1•10–4 M),in both photoperiodically-induced and non-induced plants. However,the pattern of lateral bud growth differed from that found innormal floral differentiation. In kinetintreated plants, thebud primordia are isolated from the summit of the shoot apexby a succession of rapidly growing leaves. The enhancement ofleaf growth leads to correlative inhibition of axillary budpriniordia and results, finally, in a suppression of floraldifferentiation. The inhibitory effect of kinetin on floweringwas compared with that of auxin. Inhibition of flowering occurredin both cases but is achieved in two different ways.  相似文献   

8.
The pattern of lateral root initiation in seminal roots of wheat(Triticum aestivumL. cv. Alexandria) and the location, scaleand time-course for adjustments in initiation were studied afterchanges in C and N supply. Macroscopically visible primordiaappeared in a non-acropetal sequence with the frequency (numberper unit length) increasing with distance behind the main rootapex to a maximum at 40–50 mm behind the root tip. Pruningthe root system to a single seminal axis increased the primordiafrequency by 23% within 15 h. After longer periods, the effectof root-pruning was greater. The enhanced primordia frequencywas first observed in tissue located 0–10 mm behind theapex at the start of treatment. Feeding glucose (50 mM) alsoincreased primordia frequency within 15 h, but to a greaterextent, and here additional primordia were initiated in tissuelocated 0–10and10–20 mm behind the apex at the startof treatment. Withdrawing NO3-from one part of a split-rootsystem, whilst maintaining the supply to the other, reducedprimordia frequency in the non-fed roots and, in some cases,a compensatory increase in the NO3--fed roots was observed.The location and scale of the adjustments were similar to thosefound with root-pruning and glucose-feeding, but were slightlyslower to appear. In spite of some differences in detail, therewas a broad similarity in site, scale and time-course for adjustmentsin lateral root initiation with these treatments, which is consistentwith the operation of a common mechanism. Whenever an increasein primordia frequency was observed, it was associated withan increase in the ethanol-soluble sugar content of the tissue.However, the reduction in frequency in NO3--deprived roots wasalso accompanied by an increase in sugar content. There wasno consistent relationship between total N content of the tissueand primordia frequency, but there was between primordia frequencyand the rate of net NO3-uptake. The possible mechanisms controllinglateral root initiation are discussed. Compensatory growth; correlative growth; glucose; initiation; lateral root; nitrate; primordium; split-root; Triticum aestivum; wheat  相似文献   

9.
Plants of Phaseolus vulgaris grown at 7 and 28 W m–2 showedno differences in rate of development of leaves or flowers.At 7 W m-Z plants had longer internodes, more succulent stemsand leaves, higher ratios of shoot:root and greater leaf areasthat those at 28 W m–2. These differences were establishedprior to detectable differences in photosynthesis and couldpartly be attributed to an increased proportion of far-red light. Although the final d. wt, carbon content, and fruit yield werehigher at 28 W m–2, plants at 7 W m–2 apparentlyhad similar relative growth rates and greater photosyntheticefficiency. Dry weight differences are most easily interpretedas resulting from the establishment of an earlier net carbongain at 28 W m–2 than at 7 W m–2.  相似文献   

10.
The Growth and Survival of Severely-shaded Tillers in Lolium perenne L.   总被引:5,自引:0,他引:5  
ONG  C. K.; MARSHALL  C. 《Annals of botany》1979,43(2):147-155
The effect of shading a single tiller to below its compensationpoint for a period of 5 weeks in vegetative plants of Loliumperenne L. cv. S23, was studied in two different experimentseach employing two light regimes, one of which was common toboth experiments. In the first experiment tillers in the axils of the first leafwere shaded three weeks from appearance at both 40 and 70 Wm–2. None of the shaded tillers died and they continuedto produce new leaves and increase in dry weight but at a reducedrate. In the second experiment, tillers with one emerged leafin any leaf axil position were shaded at 70 W m–2 andin a treatment in which light was reduced to 13 W m–2after initial growth at 70 W m–2. As in the first experimentall shaded tillers survived at 70 W m–2 but in the 70 13 W m–2 transfer regime all shaded tillers died. In the second experiment shaded tillers in both light regimeswere supplied with 14C-assimilate by translocation from theremainder of the plant but in the 70 13 W m–2 the initialsupport was withdrawn within 5 weeks of shading. The results are discussed in terms of the physiological relationshipsbetween the tillers of the grass plant. Lolium perenne L., growth of tillers, survival of tillers, effect of light  相似文献   

11.
Temperature Response of Vernalization in Wheat: A Developmental Analysis   总被引:4,自引:2,他引:2  
BROOKING  IAN R. 《Annals of botany》1996,78(4):507-512
The vernalization response of wheat ( Triticum aestivum L.)was reinterpreted from a developmental perspective, using currentconcepts of the developmental regulation of wheat morphologyand phenology. At temperatures above 0 °C, the effects ofthe process of vernalization per se in wheat are confoundedby the effects of concurrent vegetative development. These effectsare manifested by differences in the number of leaves initiatedby the shoot apex prior to floral initiation, which in turnaffects the subsequent rate of development to ear emergenceand anthesis. Leaf primordia development during vernalizationand total leaf number at flowering were used to develop criteriato define both the progress and the point of saturation of thevernalization response. These criteria were then used to reinterpretthe results of Chujo ( Proceedings of the Crop Science Societyof Japan 35 : 177–186, 1966), and derive the temperatureresponse of vernalization per se for plants grown under saturatinglong day conditions. The rate of vernalization increased linearlywith temperature between 1 and 11 °C, such that the timetaken to saturate the vernalization response decreased from70 d at 1 °C to 40 d at 11 °C. The rate declined againat temperatures above 11 °C, and 18 °C was apparentlyineffective for vernalization. Total leaf number at saturation,however, increased consistently with temperature, as a resultof the balance between the concurrent processes of leaf primordiuminitiation and vernalization. Total leaf number at saturationincreased from 6 at 1 °C to 13.3 at 15 °C, which inturn influenced the time taken to reach ear emergence. The advantagesof using this developmental interpretation of vernalizationas the basis for a mechanistic model of the vernalization responsein wheat are discussed. Triticum aestivum L.; wheat; vernalization; rate; temperature; primordia; leaf number; flowering  相似文献   

12.
Measurements of the growth of sainfoin and lucerne were madein the field after cutting on 31 May 1977. Sainfoin reacheda total above-ground dry weight of 408 g m–2 over thegrowing period of 48 days compared with 598 g m–2 in lucerne.Final leaf area indices (LAIs) were 2.8 in sainfoin and 6.1in lucerne. The specific leaf areas (SLAs) for sainfoin wereapproximately half those of lucerne throughout the regrowthperiod. The maximum rates of leaf appearance were 0.12 leavesper day in sainfoin and 0.85 leaves per day in lucerne. Themaximum mean rate of plant extension growth for lucerne of 2.12mm h–1 occurred during the night, whereas, in sainfointhe maximum rate of 1.72 mm h–1 occurred during the day. Measurements of extinction coefficients for PAR ranged from0.45 to 0.89 in sainfoin and from 0 42 to 0.57 in lucerne. Asthe lucerne crop increased in size leaf water potentials andsolute potentials became more negative. In sainfoin leaf waterpotentials remained remarkably high throughout the growth period,solute potentials decreased and turgor potentials increased.The stomatal conductances of the two species were similar. The photosynthetic capacities and rates of dark respirationper unit leaf area in both species were similar. The rate ofcanopy ‘gross’ photosynthesis at 295 W m–2was always greater in lucerne than in sainfoin. This was largelya matter of differences between the species in LAI, althoughat higher LAIs the more erect structure of lucerne leads toa better utilization of photosynthetically active radiation. Onobrychis vicifolia Scop, sainfoin, Medicago sativa L., lucerne, photosynthesis, water relations, temperature, canopy structure  相似文献   

13.
NILWIK  H. J. M. 《Annals of botany》1981,48(2):137-146
A growth analysis was carried out with sweet pepper plants grownin a phytotron. Irradiance conditions were: 0.84 or 3.25 MJm–2 in 8 h, 1.67 MJ m–2 in 16 h and 2.51 MJ m–2in 24 h. Temperatures applied were 25 or 21 °C during thephotoperiod in combination with 25, 21 and 17 or 21, 17 and13 °C respectively during the nyctoperiod. Highest values for leaf area and total dry weight were foundwhen applying 1.67 MJ m–2 in 16 h, followed by 3.25 MJm–2 in 8 h, irrespective of the temperature regime. Continuousirradiance ultimately resulted in leaf drop. A reduction inthe day temperature decreased leaf area and total dry weight.At a day temperature of 25 °C the dry weight increased withdecreasing night temperature when applying 3.25 MJ m–2in 8 h. At a day temperature of 21 °C leaf area and dryweight were reduced when 17 or 13 °C were applied duringa 16 h nyctoperiod. Values for relative growth rate, net assimilation rate, leafarea ratio and leaf weight ratio strongly decreased with advancingplant age. The effects of irradiance treatment on RGR and NARwere analogous to those on total dry weight while the reversepattern was observed for the LAR. A decrease in day temperaturedecreased the RGR. The effects of night temperature exhibitedstrong interactions with day temperature and photoperiod. Theinfluence of temperature on RGR was largely mediated throughchanges in the LAR. The latter parameter was highly correlatedwith the specific leaf weight. Capsicum annuum L., sweet pepper, growth analysis, irradiance, temperature, plant age  相似文献   

14.
Loliun perenne L. (cv.S. 23) was grown on vermiculite in winterin a heated greenhouse for 8 weeks under factorial combinationsof two potassium regimes (nominally 6 parts/106 and 156 parts/106in Hewitt's solution) and three densities of artificially supplementedvisible radiation flux (36.1, 7.3, and 2.2 W m–2). Growthand potassium uptake were studied through the calculation ofvarious growth functions from fitted curves. There was little effect of potassium treatment but the experimentalmaterial responded markedly to light. Leaf-area ratio in thethree treatments showed extreme plasticity in increasing from2–3 x 10–2 through 6 x 10–2 to 8–9 x10–2 m2 g–1 as light intensity decreased. Correspondingdecreases in unit leaf rate, however, caused over-all reductionsin relative growth rate. Specific absorption rates for potassium (AK, dry-weight basis)were strongly reduced at the lower light intensities but alsodisplayed complex ontogenetic drifts. Values of the allometricconstant, k (the ratio of root and shoot relative growth rates),decreased from c. 0.7 at 36.1 W m–2 through c. 0.3 at7.3 W m–2 to a value not significantly different fromzero (P < 0.05) at 2.2 W m–2. In material grown under the two higher light intensities a constantinverse relationship was found between the mass ratio of rootand shoot and the corresponding activity ratio. The resultsconform to this model: Mass ratio = –0.001+45.0 (1/activityratio) where activity ratio is expressed as specific absorptionrate for potassium (in µg g root–1 h–1)/unitshoot rate (rate of increase of whole-plant dry weight per unitshoot dry weight, in mg g shoot–1 h–1). The implicationsof this relationship are discussed.  相似文献   

15.
Cauliflower (Brassica oleracea L. botrytis) and broccoli (Brassicaoleracea L. italica) plants were grown in large pots in growthchambers for a range of temperatures (mean air temperaturesfrom 7.0-25.3 C) and irradi-ances (from 9.3-50.8 mol m–2d–1 or 4.7-25.4 MJ m–2 d–1). The extinctioncoefficient for PAR decreased with plant size reaching a valueof 0.55 in cauliflower and 0.45 in broccoli at plant leaf areasof 0.235 m2 and 0.227 m2, respectively. The leaf area expansionrate was unaffected by irradiance when compared at identicalleaf surface temperatures. The response of expansion rate tosurface temperature was fitted to a broken stick model witha base temperature of –0.7C and an optimum temperatureof 21.0C. The radiation conversion coefficient increased withair temperature below 13.8C and remained constant above this.The estimated radiation conversion coefficient above 13.8Cand for a PPFD of 20 mol m–2 d–1 was 0.77 g mol–1in cauliflower and 0.87 g mol–1 in broccoli. The radiationconversion coefficient declined with increasing irradiance levelfrom a maximum of 1.89 g mol–1 at near nil irradiancein cauliflower. Key words: Leaf area, dry matter, radiation use efficiency, extinction coefficient  相似文献   

16.
Differences in premature leaf abscission and in visible steminjury in genetic lines of poplar followed continuous fumigationswith air pollutant levels of SO2 (90–100 nl l–1)and O3 (70–80 nl l–1) either separately or together.The clones used were: Populus deltoides var. missiouriensisMarsh., P. nigra cv. ‘italicd’ L., and the hybridsP. nigra cv. ‘italica’ xP. deltoides (He-X/3) andP. nigra cv.‘italica’ x P. nigra cv. ‘Serres’(He-K/7). While most leaf abscission occurred within 20 d fromthe start of fumigation, stem lesions (intumescences), appearedonly after 72 d. Their anatomical characteristics include theformation of lysigenous aerenchyma in the lower parts of theintumescence, the sloughing of superficial cells from the injuredarea, and the development of crystalline formations on the surfaceof the lesions. P. deltoides exhibited the least morphologicalresponse to the gases. Ethylene released from fumigated leaves was determined at thesame gas concentration of SO2 (100 nl l–1), O3 (75 nll–1) and their mixture. Leaves of P. deltoides consistentlyshowed the lowest ethylene production after the gas treatments.P. ‘italica’ production was higher but was littlealtered by the treatments. The two hybrids He-X/3 and He-K/7showed the greatest increases in ethylene evolution with time.With He-K/7 exposed to the gas mixture the production of ethylenedecreased after the initial sharp rise during days 1–2,and reflected the considerable leaf damage observed after day3. The results suggest that sensitivity to air pollution, (as shownby leaf abscission and the formation of stem intumescences)can be correlated with the level of pollutant-induced ethyleneevolution from leaves. Initially high levels could induce abscission,whilst prolonged production could be responsible for intumescenceinitiation. The discussion proposes a series of events fromSO2 and/or O3 entry into the leaf and the physiological reasonsfor the clonal differences. Key words: Sulphur dioxide, ozone, ethylene, poplar, leaf abscission, stem lesions  相似文献   

17.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

18.
HIROTA  O.; OKA  M.; TAKEDA  T. 《Annals of botany》1990,65(4):349-353
During the ripening stage of barley and rice, the sink activitywas defined as the dry matter increase per units sink size,leaf area and time, as follows: NAR = A.SinkW+NAR', where NAR is the net assimilation rate (g d.wt dm–2d–1);A is the sink activity [g d.wt g–1d.wt (ear) dm–2d–1]; Sink W is ear wt per plant at heading (g d.wt);and NAR' is net assimilation rate excluding the assimilate ofsink organ (g d.wt dm–2 d–1). Plant material with 16 combinations of mutually different sink(ear) and source (leaf) size were produced at heading for eachcrop: parts of each leaf and ear were removed to produce fourgrades in barley, and also a part of each leaf was removed producingfour grades for four rice varieties showing different ear size.NAR and NAR' were determined during 26 and 21 d in barley andrice after heading, respectively. Sink activity (A), representedas the assimilation rate induced by the sink organ, was estimatedfrom the relationship between SinkW and NAR using the previousequation. The sink activity was significantly higher in ricewith a value of 0–0.028 g d.wt g–1 d.wt (ear) dm–2d–1 vs. 0–0.0017 in barley, suggesting that therelative role of leaves for grain filling is considerably higherin rice than in barley. The sink activity obtained in the studymight be introduced into a model to predict the yields of barleyand rice. Hordeum vulgare L, barley, Oryza saliva L, rice, dry matter, NAR, sink, source, sink activity, model  相似文献   

19.
Photosynthetic acclimation was examined by exposing third trifoliolateleaves of soybeans to air temperatures of 20 to 30°C andphotosynthetic photon flux densities (PPFD) of 150 to 950µmolphotons m–2 s–1 for the last 3 d before they reachedmaximum area. In some cases the environment of the third leafwas controlled separately from that of the rest of the plant.Photosynthesis, respiration and dry mass accumulation were determinedunder the treatment conditions, and photosynthetic capacity,and dry mass and protein content were determined at full expansion.Photosynthetic capacity, the light-saturated rate of net carbondioxide exchange at 25°C and 34 Pa external partial pressureof carbon dioxide, could be modified between 21 and 35 µmolCO2 m–2 s–1 by environmental changes after leaveshad become exporters of photosynthate. Protein per unit leafmass did not differ between treatments, and photosynthetic capacityincreased with leaf mass per unit area. Photosynthetic capacityof third leaves was affected by the PPFD incident on those leaves,but not by the PPFD on other leaves on the plant. Photosyntheticcapacity of third leaves was affected by the temperature ofthe rest of the plant, but not by the temperature of the thirdleaves. Photosynthetic capacity was linearly related to carbondioxide exchange rate in the growth regimes, but not to daytimePPFD. At high PPFD, and at 25 and 30°C, mass accumulationwas about 28% of the mass of photosynthate produced. At lowerPPFD, and at 20°C, larger percentages of the photosynthateproduced accumulated as dry mass. The results suggest that photosynthatesupply is an important factor controlling leaf structural growthand, consequently, photosynthetic acclimation to light and temperature. Key words: Glycine max (L.) Merr., photosynthesis, temperature acclimation, light acclimation, photosynthate partitioning  相似文献   

20.
Shishido, Y., Challa, H. and Krupa, J. 1987. Effects of temperatureand light on the carbon budget of young cucumber plants studiedby steady-state feeding with 14CO°2J. exp. Bot. 38: 1044–1054. The effect of temperature on the fate of 14C assimilated insteady-state by the expanding third leaf of cucumber seedlingswas studied at irradiances of either 30 or 75 W m–2 (PAR)with a daylength of 8 h. The irradiance did not affect the relativedistribution of 14C assimilated by the source leaf between growth,respiration and export. In the range 15–30°C risesin temperature generally increased the proportion of carbonexported. The average rate of carbon exported during the nightwas about half the rate in the day. About 45% of the exportedcarbon was lost by respiration. The distribution pattern ofcarbon exported during the day differed considerably from thatof carbon exported during the night. The intensity of irradiance did not affect the proportion oflabelled carbon recovered from the roots. Thus the decreasedshoot/root ratio generally observed with increased irradianceis not directly controlled by carbohydrate supply. We found that the distribution patterns of exported 14C do notnecessarily represent the real carbon distribution, due to differencesin specific activity of imported carbon of individual organs.Consequently distribution patterns of 14C observed in experimentswith one source leaf have to be considered with caution. Key words: Carbon budget, 14C, 14C steady-state feeding, translocation, respiration, assimilate distribution, cucumber, temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号