首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Camptothecin (CPT) binds reversibly to, and thereby stabilizes, the cleavable complex formed between DNA and topoisomerase I. The nature of the interaction of CPT with the DNA-topoisomerase I binary complex was studied by the use of two affinity labeling reagents structurally related to camptothecin: 10-bromoacetamidomethylcamptothecin (BrCPT) and 7-methyl-10-bromoacetamidomethylcamptothecin (BrCPTMe). These compounds have been shown to trap the DNA-topoisomerase I complex irreversibly. Although cleavage of DNA plasmid mediated by topoisomerase I and camptothecin was reduced significantly by treatment with high salt or excess competitor DNA, enzyme-mediated DNA cleavage stabilized by BrCTPMe persisted for at least 4 h after similar treatment. The production of irreversible topoisomerase I-DNA cleavage was time-dependent, suggesting that BrCPTMe first bound noncovalently to the enzyme-DNA complex and, in a second slower step, alkylated the enzyme or DNA in a manner that prevented DNA ligation. The formation of a covalent linkage was supported by experiments that employed [3H]BrCPT, which was shown to label topoisomerase I within the enzyme-DNA complex. [3H]BrCPT labeling of topoisomerase I was enhanced greatly by the presence of DNA; very little labeling of isolated topoisomerase I or isolated DNA occurred. Even in the presence of DNA, [3H]BrCPT labeling of topoisomerase I was inhibited by camptothecin, suggesting that both CPT and BrCPT bound to the same site on the DNA-topoisomerase I binary complex. These studies provide further evidence that a binding site for camptothecin is created as the DNA-topoisomerase I complex is formed and suggest that the A-ring of camptothecin is proximate to an enzyme residue.  相似文献   

2.
Wang X  Zhou X  Hecht SM 《Biochemistry》1999,38(14):4374-4381
Recent findings concerning the structure of the covalent binary complex formed by DNA topisomerase I and its DNA substrate, as well as the nature of interactions with inhibitors that bind reversibly to this binary complex, have led to two proposed models for the binding of the prototype inhibitor camptothecin to the DNA-topisomerase I binary complex. While these models differ in many regards, they both suggest the involvement of the 20-OH group of camptothecin in a donor hydrogen bond with an enzyme side chain functional group. Presently, five analogues of camptothecin that differ only at C-20 have been evaluated for their ability to bind to the topoisomerase I-DNA binary complex and thereby inhibit enzyme function. Both 20-chloro- and 20-bromocamptothecin bound as well to the enzyme-DNA binary complex as 20-aminoCPT despite the absence of a substituent at C-20 capable of contributing a donor hydrogen bond.  相似文献   

3.
The different steps of the human Top1 (topoisomerase I) catalytic cycle have been analysed in the presence of a pentacyclic-diquinoid synthetic compound. The experiments indicate that it efficiently inhibits the cleavage step of the enzyme reaction, fitting well into the catalytic site. Surprisingly the compound, when incubated with the binary topoisomerase–DNA cleaved complex, helps the enzyme to remove itself from the cleaved DNA and close the DNA gap, increasing the religation rate. The compound also induces the religation of the stalled enzyme–CPT (camptothecin)–DNA ternary complex. Analysis of the molecule docked over the binary complex, together with its chemical properties, suggests that the religation enhancement is due to the presence on the compound of two oxygen atoms that act as hydrogen acceptors. This property facilitates the deprotonation of the 5′ DNA end, suggesting that this is the limiting step in the topoisomerase religation mechanism.  相似文献   

4.
Homocamptothecin (hCPT) contains a seven-membered beta-hydroxylactone in place of the conventional six-membered alpha-hydroxylactone ring found in camptothecin and its tumor active analogues, including topotecan and irinotecan. The homologation of the lactone E-ring reinforces the stability of the lactone, thus reducing considerably its conversion into a carboxylate form which is inactive. We have recently shown that hCPT is much more active than the parent compound against a variety of tumor cells in vitro and in xenograft models, suggesting that a highly reactive lactone is not essential for topoisomerase I-mediated anticancer activity [Lesueur-Ginot et al. (1999) Cancer Res. 59, 2939-2943]. In the present study, we provide further evidence that hCPT has superior topoisomerase I inhibition capacities to CPT. In particular, we show that replacement of the camptothecin lactone E-ring with a homologous seven-membered lactone ring changes the sequence-specificity of the drug-induced DNA cleavage by topoisomerase I. Both CPT and hCPT stimulate the cleavage by topoisomerase I at T( downward arrow)G sites, but in addition, hCPT stabilizes cleavage at specific sites containing the sequence AAC( downward arrow)G. At low drug concentrations, the cleavage at the T( downward arrow)G sites and at the hCPT-specific C( downward arrow)G sites is more pronounced and more stable with hCPT than with CPT. The in vitro data were confirmed in cells. Higher levels of protein-DNA complexes were detected in P388 leukemia cells treated with hCPT than those treated with CPT. Immunoblotting experiments revealed that endogenous topoisomerase I was efficiently trapped onto DNA by hCPT in cells. Finally, the use of a leukemia cell line resistant to CPT provided evidence that topoisomerase I is involved in the cytotoxicity of hCPT. Altogether, the results show that the beta-hydroxylactone ring of hCPT plays an important and positive role in the poisoning of topoisomerase I. An explanation is proposed to account for such remarkable changes in the sequence specificity of topoisomerase I cleavage consequent to the modification of the lactone. The study sheds new light on the importance of the lactone ring of camptothecins for the stabilization of topoisomerase I-DNA complexes.  相似文献   

5.
The human topoisomerase I-mediated DNA relaxation reaction was studied following modification of the enzyme at the active site tyrosine (position 723). A series of unnatural tyrosine analogues was incorporated into the active site of human topoisomerase I by utilizing misacylated suppressor tRNAs in an in vitro protein synthesizing system. The relaxation activities of the modified human topoisomerase I analogues having varied steric, electronic, and stereochemical features were all greatly diminished relative to that of the wild type. It was found that modifications involving replacement of the nucleophilic tyrosine OH group with NH2, SH, or I groups eliminated DNA relaxation activity, as did changing the orientation of the nucleophilic tyrosine OH group. Only tyrosine analogues having the phenolic OH group in the normal position with respect to the protein backbone were active; the relative activities could be rationalized in chemical terms on the basis of the H-bonding and the electronic effects of the substituents attached to the meta position of the aromatic ring. In addition, the poisoning of one of the modified human topoisomerase I analogues, as part of covalent binary complexes with DNA, by CPT and 20-thio CPT was evaluated.  相似文献   

6.
DIM (3,3'-di-indolylmethane), an abundant dietary component of cruciferous vegetables, exhibits a wide spectrum of pharmacological properties. In the present study, we show that DIM is a potent inhibitor of Leishmania donovani topoisomerase I with an IC50 of 1.2 microM. Equilibrium dialysis shows that DIM binds strongly to the free enzyme with a binding constant of 9.73x10(-9) M. The binding affinity of DIM to the small subunit is 8.6-fold more than that of the large subunit of unusual LdTOP1LS (bi-subunit L. donovani topoisomerase I). DIM stabilizes topoisomerase I-DNA cleavage complexes in vitro and also in vivo. Like CPT (camptothecin), DIM inhibits the religation step when the drug was added to preformed topoisomerase I-DNA binary complex. Hence, DIM is similar to CPT with respect to its ability to form the topoisomerase I-mediated 'cleavable complexes' in vitro and in vivo. But unlike CPT, DIM interacts with both free enzyme and substrate DNA. Therefore DIM is a non-competitive class I inhibitor of topoisomerase I. DIM also inhibits the relaxation activity of the CPT-resistant mutant enzyme LdTOP1Delta39LS (N-terminal deletion of amino acids 1-39 of LdTOP1LS). The IC50 values of DIM in simultaneous and enzyme pre-incubation relaxation assays were 3.6 and 2.9 muM respectively, which are higher than that of wild-type topoisomerase I (LdTOP1LS), indicating that the affinity of DIM to LdTOP1Delta39LS is less than that for LdTOP1LS. This is the first report on DIM as an L. donovani topoisomerase I poison. Our study illuminates a new mode of action of enzyme inhibition by DIM that might be exploited for rational drug design in human leishmaniasis.  相似文献   

7.
p14ARF (ARF) and topoisomerase I play central roles in cancer and have recently been shown to interact. The interaction activates topoisomerase I, an important target for camptothecin-like chemotherapeutic drugs, but the regulation of the interaction is poorly understood. We have used the H358 and H23 lung cancer cell lines and purified recombinant human topoisomerase I to demonstrate that the ARF/topoisomerase I interaction is regulated by topoisomerase I serine phosphorylation, a modification that regulates topoisomerase I activity. Both cell lines express wild-type ARF and topoisomerase I proteins at equivalent levels, but H23 topoisomerase I, unlike that of H358 cells, is largely devoid of serine phosphorylation, has low activity, and complexes poorly with ARF. The ability of H23 topoisomerase I to complex with ARF can be restored by treatment with the serine kinase, casein kinase II. Consistent with these observations, we show that the response of H23 cells to camptothecin treatment is unaffected by changes in intracellular levels of ARF. However, in H358 and PC-3 cells, which express a serine phosphorylated topoisomerase I that complexes with ARF, ectopic overexpression of ARF causes sensitization to camptothecin, and siRNA-mediated down-regulation of endogenous ARF causes desensitization to camptothecin. These biological responses correlate with increased and decreased levels, respectively, of ARF/topoisomerase I complex and DNA-bound topoisomerase I. Thus, ARF is a serine phosphorylation-dependent coregulator of topoisomerase I in vivo, and it regulates cellular sensitivity to camptothecin by interacting with topoisomerase I. Certain cancer associated defects affecting ARF/topoisomerase I complex formation could contribute to cellular resistance to camptothecin.  相似文献   

8.
Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I.  相似文献   

9.
Recombinases of the lambda-Int family and type IB topoisomerases act by introducing transient single strand breaks in DNA using chemically identical reaction schemes. Recent structural data have supported the relationship between the two enzyme groups by revealing considerable similarities in the architecture of their catalytic pockets. In this study we show that the Int-type recombinase Flp is inhibited by the two structurally unrelated topoisomerase I-directed anti-cancer drugs, camptothecin (CPT) and NSC-314622. The interaction of these drugs with topoisomerase I is very specific with several single amino acid substitutions conferring drug resistance to the enzyme. Thus, the observed interaction of CPT and NSC-314622 with Flp, which is comparable to their interaction with the cleavage complex formed by topoisomerase I, strongly supports a close mechanistic and evolutionary relationship between the two enzymes. The results suggest that Flp and other Int family recombinases may provide model systems for dissecting the molecular mechanisms of topoisomerase I-directed anti-cancer therapeutic agents.  相似文献   

10.
Poly(ADP-ribose) polymerase-1 (PARP1) plays critical roles in the regulation of DNA repair. Accordingly, small molecule inhibitors of PARP are being developed as agents that could modulate the activity of genotoxic chemotherapy, such as topoisomerase I poisons. In this study we evaluated the ability of the PARP inhibitor veliparib to enhance the cytotoxicity of the topoisomerase I poisons topotecan and camptothecin (CPT). Veliparib increased the cell cycle and cytotoxic effects of topotecan in multiple cell line models. Importantly, this sensitization occurred at veliparib concentrations far below those required to substantially inhibit poly(ADP-ribose) polymer synthesis and at least an order of magnitude lower than those involved in selective killing of homologous recombination-deficient cells. Further studies demonstrated that veliparib enhanced the effects of CPT in wild-type mouse embryonic fibroblasts (MEFs) but not Parp1(-/-) MEFs, confirming that PARP1 is the critical target for this sensitization. Importantly, parental and Parp1(-/-) MEFs had indistinguishable CPT sensitivities, ruling out models in which PARP1 catalytic activity plays a role in protecting cells from topoisomerase I poisons. To the contrary, cells were sensitized to CPT in a veliparib-independent manner upon transfection with PARP1 E988K, which lacks catalytic activity, or the isolated PARP1 DNA binding domain. These results are consistent with a model in which small molecule inhibitors convert PARP1 into a protein that potentiates the effects of topoisomerase I poisons by binding to damaged DNA and preventing its normal repair.  相似文献   

11.
12.
Luotonin A is a cytotoxic alkaloid that has been shown to inhibit topoisomerase I via stabilization of the binary complex topoisomerase-DNA in the same fashion as camptothecin. The synthesis and the cytotoxic activity on the lung carcinoma cell line H460 of a series of derivatives of Luotonin A is reported. The compounds inhibit topoisomerase I but show weak cytotoxic activity, thus confirming the peculiarity of ring E of camptothecin for antitumor activity.  相似文献   

13.
The antitumor activity of camptothecin (CPT) and its derivatives, including water-soluble topotecan (TPT), is determined by their ability to inhibit human DNA topoisomerase I (top 1). On the other hand, TPT has been recently shown to bind to DNA. The proposed models are based on a two-step mechanism of TPT (CPT) dimer interaction with two spatially close DNA duplexes. At the first step, the CPT lactone form binds to DNA (Streltsov et al., Mol. Biol. vol. 36, no. 5 (2002)) through hydrogen bonding of its C16a carbonyl with the guanine 2-amino group. At the second step, CPT is converted to the carboxylate form. In the absence of top 1, the C17 hydroxyl of CPT is involved in ester exchange (nicking of the DNA sugar-phosphate backbone followed by covalent joining of free phosphate to C17) whereas its C20 carboxyl forms two hydrogen bonds with the same guanine nucleotide at the opposite end of the broken DNA backbone. As a result, CPT binds to both ends of the broken DNA. The resulting CPT-DNA complex is alkali-labile. In the presence of top 1, after CPT conversion to the carboxylate form and DNA nicking, the C17 hydroxyl makes a branching hydrogen bond with N1 and N3 of guanine while the C20 carboxyl makes two hydrogen bonds with the NH of Tyr723 and N(delta2)H(2) of Asp722. Owing to this, rotation of one end of the broken sugar-phosphate backbone about the other becomes impossible; hence the CPT inhibitory effect on top 1. The proposed models are consistent with the current body of experimental data.  相似文献   

14.
We investigated the mode of action of the antitumor drug, camptothecin, by use of a partly double-stranded suicide DNA substrate which enables uncoupling of the cleavage and religation half-reactions of topoisomerase I. The suicide DNA substrate contains a single topoisomerase I site at which SDS cleavage is strongly enhanced by camptothecin on normal double-stranded DNA. The results show that the religation reaction of topoisomerase I per se is strongly inhibited at this site compared to site that is only marginally affected by camptothecin on double-stranded DNA. This study hereby directly demonstrates that camptothecin-mediated stability of a topoisomerase I-DNA complex is sequence-dependent. The influence of camptothecin on the suicide cleavage reaction of topoisomerase I was also investigated. Surprisingly, the cleavage reaction per se is strongly inhibited by the drug. However, reformation of a cleavable suicide DNA substrate, which is fully double-stranded downstream from the cleavage position except for a nick, completely reverses the inhibitory effect of the drug on the cleavage reaction. The results suggest that the inhibitory effect of camptothecin on cleavage is due to a general decrease in the noncovalent interaction of topoisomerase I with partly double-stranded suicide DNA substrates. Based on the findings, a plausible model for camptothecin action is discussed.  相似文献   

15.
16.
17.
Camptothecin, a cytotoxic antitumor compound, has been shown to produce protein-linked DNA breaks mediated by mammalian topoisomerase I. We have investigated the mechanism by which camptothecin disrupts DNA processing by topoisomerase I and have examined the effect of certain structurally related compounds on the formation of a DNA-topoisomerase I covalent complex. Enzyme-mediated cleavage of supercoiled plasmid DNA in the presence of camptothecin was completely reversed upon the addition of exogenous linear DNA or upon dilution of the reaction mixture. Camptothecin and topoisomerase I produced the same amount of cleavage from supercoiled DNA or relaxed DNA. In addition, the alkaloid decreased the initial velocity of supercoiled DNA relaxation mediated by catalytic quantities of topoisomerase I. Inhibition occurred under conditions favoring processive catalysis as well as under conditions favoring distributive catalysis. By use of [3H]camptothecin and an equilibrium dialysis assay, the alkaloid was shown to bind reversibly to a DNA-topoisomerase I complex, but not to isolated enzyme or isolated DNA. These results are consistent with a model in which camptothecin reversibly traps an intermediate involved in DNA unwinding by topoisomerase I and thereby perturbs a set of equilibria, resulting in increased DNA cleavage. By examining certain compounds that are structurally related to camptothecin, it was found that the 20-hydroxy group, which has been shown to be essential for antitumor activity, was also necessary for stabilization of the covalent complex between DNA and topoisomerase I. In contrast, no such correlation existed for UV-light-induced cleavage of DNA by Cu(II)-camptothecin derivatives.  相似文献   

18.
The plant alkaloid camptothecin (CPT) has demonstrated the ability to inhibit replication of the equine anemia virus (E1AV) and the human immunodeficiency virus (HIV) in infected cells in culture. Further, CPT prevented the development of lymphoma and erythroleukemia in mice infected with the Moloney murine leukemia virus and the Friend erythroleukemia virus, respectively, as assessed by prevention or reduction of splenomegaly. These results were observed at concentrations that had no apparent toxic effects on the mice. It has been suggested that the antiretroviral activity of CPT is mediated by the host cell's enzyme topoisomerase I. Taken collectively, the findings indicate that CPT analogues may develop into potent drugs against various human and animal diseases caused by diverse retroviruses. Copyright 1996 S. Karger AG, Basel  相似文献   

19.
Li Q  Zu Y  Shi R  Yao L  Fu Y  Yang Z  Li L 《Bioorganic & medicinal chemistry》2006,14(21):7175-7182
In an attempt to improve the antitumor activity and decrease the cytotoxicity of camptothecin, 18 new 10-substituted camptothecin derivatives were prepared. The cytotoxicity in vitro on cancer cell lines and antitumor activity in vivo, and inhibitory properties of topoisomerase I of these derivatives were evaluated. Most of these derivatives possessed lower cytotoxicities than CPT, and the compounds 13, 21, 22, 23, and 24 showed similar topoisomerase I inhibitory activity to CPT. Analogues 13 exhibited the best antitumor activity in vivo among all derivatives we prepared.  相似文献   

20.
The enzyme topoisomerase I (topo I), which is essential for cell replication, transiently causes a DNA single strand break and makes a complex with it. The anti-cancer agent camptothecin (CPT) binds to the topo I–DNA complex and stabilizes it, preventing resealing of the broken DNA strand and cell growth. Considering the structural factors of CPT that are believed to be involved in stabilizing the topo I–DNA complex via hydrogen bonding and stacking interactions, designs of two new analogues of CPT (topo I inhibitors) have been suggested. The molecular geometries of CPT, two of its analogues and certain other related molecules included in the study were fully optimized in both gas phase and aqueous media at the B3LYP/6-311++G(d,p) level of density functional theory. Solvation effects of aqueous media were treated using the polarizable continuum model (PCM). Net CHelpG charges and surface molecular electrostatic potentials (MEP) near the atomic sites of the molecules were studied. Structural analogy and surface MEP values suggests that the two new CPT analogues studied here would be potent topoisomerase I inhibitors. Figure Optimized structures of CPT and two of its new analogues, 10 and 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号