首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible role of increased vascular reactivity in the mechanism of experimental hypertension was studied by measurements of the critical opening pressure (COP) of tail vessels in conscious rats. In hypertension induced by administration of desoxycorticosterone acetate (DOCA) and replacement of the drinking water by 1% NaCl solution (DOCA-NaCl hypertension), and in one-kidney Goldblatt renovascular hypertension, the raised level of blood pressure was associated with an increased COP of the tail vessels when measured both before and after ganglionic blockade. In rats treated with either DOCA alone or 1% NaCl alone there was no significant increase in systolic blood pressure (SBP) or COP relative to the corresponding controls. In all four experimental series intravenous infusion of angiotensin or norepinephrine in conscious ganglion-blocked rats produced dose-dependent increases in SBP and COP. In DOCA-NaCl hypertensive rats but not in renovascular hypertensives, nor in rats treated with DOCA alone or 1% NaCl alone, the increase in COP for a given increment in dose of angiotensin or norepinephrine was significantly greater than in the control rats. It is concluded that in DOCA-NaCl hypertension there is a true increase in the reactivity of the smooth muscle of the resistance vessels to angiotensin and norepinephrine. In renovascular hypertension this is not the case and other factors must therefore be involved in causing the increased blood pressure and COP.  相似文献   

2.
The distribution of polymorphism of the angiotensin II type 1 receptor in Ukrainian population was investigated. Healthy persons had genotypes AA (51%), AC (34%), CC (15%) and alleles A (68%), C (32%). We suppose the prevalence of allele C and genotypes CC in health persons in Ukrainian population. The frequencies of genotypes and alleles in patients with essential hypertension were AA (22,85%), AC (51,9%), CC (25,3%) and A (48,7%), C (51,3%). Thus the development of essential hypertension was associated with the presence of allele C and its homozygote variant. Moreover the severity and complications of hypertension depended on the presence of this allele and genotype. We concluded that Ukrainian population has specific distribution of polymorphism of the angiotensin II type 1 receptor with prevalence of allele C1166 and genotype CC. The presence of these genetic variants is a risk factor for essential hypertension.  相似文献   

3.
Angiotensin II is a biologically active component of the renin-angiotensin system. High levels of angiotensin II may be responsible for hypertension and heart failure because they increase systemic vascular resistance, arterial pressure, and sodium and fluid retention. Therefore, it is important to monitor angiotensin II levels for the treatment of hypertension and heart diseases. The goal of this work was to develop a bioluminescence immunoassay using aequorin as a label to measure angiotensin II levels in human plasma. This method utilizes a genetically engineered fusion protein between angiotensin II and aequorin. For that, the C terminus of angiotensin II was fused to the N terminus of apoaequorin using molecular biology techniques. A heterogeneous immunoassay was then developed for the determination of angiotensin II. A detection limit of 1 pg/mL was obtained with the optimized assay, allowing for the determination of angiotensin II at physiological levels in human plasma.  相似文献   

4.
Several genetic studies were carried out among hypertensive patients to assess allelic association at the 1166 position of the 3' untranslated region of angiotensin II type 1 receptor gene. In addition, attempts have also been made to find out whether telomere length attrition is associated with hypertension. The main aim of this study was to examine the association of A1166C polymorphism of angiotensin II type 1 receptor and telomere length with essential hypertension in Egyptian people. Angiotensin II type 1 genotyping and relative telomere length were investigated by PCR in 40 patients of essential hypertension and 15 healthy controls. The homozygous AA1166 allele frequency was 92.8% among the studied subjects. There was no intergroup variation in A allele frequency in normotensive group. The frequency of homozygous A allele was significantly higher in hypertensive than normotensive subjects (97.5 and 80%, respectively) with higher frequencies in male patients. The average telomere length ratio was significantly shorter in hypertensive than in normal subjects (1.08?±?0.3 and 1.54?±?0.18, respectively). No correlation was observed between telomere length ratio and body mass index. This study suggests that the homozygous A1166 allele of angiotensin II type 1 and short telomeres may be predisposing factors for essential hypertension in Egyptians and may be involved in the pathogenesis of the disease. Further strategies for treating high-risk patients could result in prevention or delay of end organ damage.  相似文献   

5.
6.
Pendrin is an anion exchanger expressed in the apical regions of B and non-A, non-B intercalated cells. Since angiotensin II increases pendrin-mediated Cl(-) absorption in vitro, we asked whether angiotensin II increases pendrin expression in vivo and whether angiotensin-induced hypertension is pendrin dependent. While blood pressure was similar in pendrin null and wild-type mice under basal conditions, following 2 wk of angiotensin II administration blood pressure was 31 mmHg lower in pendrin null than in wild-type mice. Thus pendrin null mice have a blunted pressor response to angiotensin II. Further experiments explored the effect of angiotensin on pendrin expression. Angiotensin II administration shifted pendrin label from the subapical space to the apical plasma membrane, independent of aldosterone. To explore the role of the angiotensin receptors in this response, pendrin abundance and subcellular distribution were examined in wild-type, angiotensin type 1a (Agtr1a) and type 2 receptor (Agtr2) null mice given 7 days of a NaCl-restricted diet (< 0.02% NaCl). Some mice received an Agtr1 inhibitor (candesartan) or vehicle. Both Agtr1a gene ablation and Agtr1 inhibitors shifted pendrin label from the apical plasma membrane to the subapical space, independent of the Agtr2 or nitric oxide (NO). However, Agtr1 ablation reduced pendrin protein abundance through the Agtr2 and NO. Thus angiotensin II-induced hypertension is pendrin dependent. Angiotensin II acts through the Agtr1a to shift pendrin from the subapical space to the apical plasma membrane. This Agtr1 action may be blunted by the Agtr2, which acts through NO to reduce pendrin protein abundance.  相似文献   

7.
In renal artery stenosis severe enough to cause hypertension, angiotensin II maintains glomerular filtration rate (GFR) both in the initial high renin phase of hypertension and later when plasma levels are normal. Angiotensin II also maintains GFR in less severe stenosis, which does not cause hypertension. This homeostatic action of angiotensin II to maintain GFr has minimal effects on blood flow. In renal-wrap hypertension, plasma renin levels are elevated for longer than after renal artery stenosis, but in other respects this initial phase of the hypertension is similar to that after renal artery stenosis. GFR is reduced, the rate of development of hypertension is accelerated by angiotensin II, and angiotensin II maintains the glomerular filtration fraction. Renal resistance is markedly increased owing to both compression of the kidney by the hypertrophying renal capsule and to angiotensin II. Thus angiotensin II apparently plays a primarily homeostatic role in renovascular hypertension to maintain glomerular ultrafiltration. It is suggested that the angiotensin II may be formed intrarenally and may act on sites other than resistance blood vessels.  相似文献   

8.
The renin-angiotensin system (RAS) plays an important role in regulating arterial pressure, blood volume, thirst, cardiac function, and cellular growth. Both a circulating and multiple tissue-localized systems have been identified, and are generally portrayed as a series of reactions that occur sequentially with a single outcome: angiotensinogen is cleaved by renin to form angiotensin I, which in turn is processed by angiotensin-converting enzyme (ACE) to angiotensin II, which then activates either the AT1 or the AT2 plasma membrane receptor. Evidence has emerged, however, showing that some RAS components play important roles outside of this canonical scheme. This article provides an overview of some recently identified extra-system functions. In addition to forming angiotensin II, ACE is a multifunctional enzyme equally important in the metabolism of vasodilator and antifibrotic peptides. As the membrane-bound form, ACE functions as a "receptor" that initiates intracellular signaling leading to gene expression. Both angiotensin I and II may lead to actions that are independent of, or even oppose, those of the RAS via their metabolism by the novel ACE-homologue ACE2. The two angiotensin II receptor types have ligand-independent roles that influence cellular signaling and growth, some of which may result from the ability to form hetero-dimers with other 7-transmembrane receptors. Finally, intracellular angiotensin II has been demonstrated to have actions on cell-communication, gene expression, and cellular growth, through both receptor-dependent and independent means. A greater understanding of these extra-system functions of the RAS components may aid in the development of novel treatments for hypertension, myocardial ischemia, and heart failure.  相似文献   

9.
Forty hypertensive patients were studied to examine the assumption that the angiotensin pressor dose reflects endogenous renin activity. Peripheral renin activity was assayed by the method of Boucher et al.4 Sensitivity to the infusion of synthetic angiotensin II was determined as suggested by Kaplan and Silah.1Sixteen patients with essential hypertension with normal renal angiography required 3.8 ng. angiotensin/kg./min. to raise the diastolic pressure 20 mm. Hg. All but one were sensitive to angiotensin infusion of less than 5 ng./kg./min. Renin activity was normal in all except in one sensitive subject. Angiotensin infusion response and mean renin activity in 13 patients with essential hypertension with abnormal renal angiography were similar to that of the first group. The pressor dose in 11 renovascular hypertensives was 9.8 ng./kg./min. All but three had elevated plasma renin activity.Our results suggest that: (1) the angiotensin infusion test is suitable for differentiating patients with true renovascular hypertension from those with essential hypertension with or without associated renal artery disease; (2) the angiotensin pressor dose correlates with the level of peripheral venous renin activity (p < 0.01).  相似文献   

10.
Complex interactions between genes and environment result in a sodium-induced elevation in blood pressure (salt sensitivity) and/or hypertension that lead to significant morbidity and mortality affecting up to 25% of the middle-aged adult population worldwide. Determining the etiology of genetic and/or environmentally-induced high blood pressure has been difficult because of the many interacting systems involved. Two main pathways have been implicated as principal determinants of blood pressure since they are located in the kidney (the key organ responsible for blood pressure regulation), and have profound effects on sodium balance: the dopaminergic and renin–angiotensin systems. These systems counteract or modulate each other, in concert with a host of intracellular second messenger pathways to regulate sodium and water balance. In particular, the G protein-coupled receptor kinase type 4 (GRK4) appears to play a key role in regulating dopaminergic-mediated natriuresis. Constitutively activated GRK4 gene variants (R65L, A142V, and A486V), by themselves or by their interaction with other genes involved in blood pressure regulation, are associated with essential hypertension and/or salt-sensitive hypertension in several ethnic groups. GRK4γ ?142V?transgenic mice are hypertensive on normal salt intake while GRK4γ? 486V? transgenic mice develop hypertension only with an increase in salt intake. GRK4 gene variants have been shown to hyperphosphorylate, desensitize, and internalize two members of the dopamine receptor family, the D1 (D1R) and D3 (D3R) dopamine receptors, but also increase the expression of a key receptor of the renin–angiotensin system, the angiotensin type 1 receptor (AT1R). Knowledge of the numerous blood pressure regulatory pathways involving angiotensin and dopamine may provide new therapeutic approaches to the pharmacological regulation of sodium excretion and ultimately blood pressure control.  相似文献   

11.

Objectives

Hypertension is one of the major cardiovascular diseases. It affects nearly 1.56 billion people worldwide. The present study is about a particular genetic polymorphism (A1166C), gene expression and protein expression of the angiotensin II type I receptor (AT1R) (SNP ID: rs5186) and its association with essential hypertension in a Northern Indian population.

Methods

We analyzed the A1166C polymorphism and expression of AT1R gene in 250 patients with essential hypertension and 250 normal healthy controls.

Results

A significant association was found in the AT1R genotypes (AC+CC) with essential hypertension (χ2 = 22.48, p = 0.0001). Individuals with CC genotypes were at 2.4 times higher odds (p = 0.0001) to develop essential hypertension than individuals with AC and AA genotypes. The statistically significant intergenotypic variation in the systolic blood pressure was found higher in the patients with CC (169.4±36.3 mmHg) as compared to that of AA (143.5±28.1 mmHg) and AC (153.9±30.5 mmHg) genotypes (p = 0.0001). We found a significant difference in the average delta-CT value (p = 0.0001) wherein an upregulated gene expression (approximately 16 fold) was observed in case of patients as compared to controls. Furthermore, higher expression of AT1R gene was observed in patients with CC genotype than with AC and AA genotypes. A significant difference (p = 0.0001) in the protein expression of angiotensin II Type 1 receptor was also observed in the plasma of patients (1.49±0.27) as compared to controls (0.80±0.24).

Conclusion

Our findings suggest that C allele of A1166C polymorphism in the angiotensin II type 1 receptor gene is associated with essential hypertension and its upregulation could play an important role in essential hypertension.  相似文献   

12.
Despite recent strides in the traditional pharmacological therapies in the control and management of hypertension, a successful prevention and cure for this disease by conventional drug strategy remain at a standstill. We have begun to investigate the conceptual possibility of the use of gene therapy in the control of hypertension. In this article we describe an experimental protocol that provides proof of the principle that antisense (AS) inhibition of Type I angiotensin II receptor (AT(1)-R) could prevent development of hypertension on a long-term basis. A retrovirus-based vector has been used to deliver AT(1)R-AS with high efficiency that attenuates development of high blood pressure and hypertension-associated cardiac and vascular pathophysiology in the spontaneously hypertensive rat.  相似文献   

13.
血管紧张素转换酶2(ACE2)和Mas受体的发现使人们对肾素-血管紧张素(RAS)有了更全面的认识。ACE2可水解血管紧张素Ⅰ和血管紧张素Ⅱ直接或间接生成血管紧张素1-7(Ang 1-7),并与高血压的形成密切相关。Ang 1-7主要通过Mas受体引起血管舒张、抑制细胞增殖。ACE2-Ang1-7-Mas轴的发现为RAS的研究、高血压等心血管疾病的防治和新药开发提供了新的思路和方向。  相似文献   

14.
AimsDespite the broad pharmacological arsenal to treat hypertension, chronic patients may develop irreversible cardiac remodeling and fibrosis. Angiotensin II, the main peptide responsible for the Renin-Angiotensin-Aldosterone-System, has been closely linked to cardiac remodeling, hypertrophy, fibrosis, and hypertension, and some of these effects are induced by inflammatory mediators. Resolvin-D1 (RvD1) elicits potent anti-inflammatory and pro-resolving effects in various pathological models. In this study, we aimed to examine whether RvD1 ameliorates cardiac remodeling and hypertension triggered by angiotensin II.Methods and resultsAlzet® osmotic mini-pumps filled with angiotensin II (1.5 mg/kg/day) were implanted in male C57BL/6 J mice for 7 or 14 days. RvD1 (3 μg/kg/day, i.p) was administered one day after the surgery and during the complete infusion period. Blood pressure and myocardial functional parameters were assessed by echocardiography. At the end of the experimental procedure, blood and heart tissue were harvested, and plasma and histological parameters were studied. After 7 and 14 days, RvD1 reduced the increase of neutrophil and macrophage infiltration triggered by angiotensin II, and also reduced ICAM-1 and VCAM-1 expression levels. RvD1 also reduced cytokine plasma levels (IL-1β, TNF-α, IL-6, KC, MCP-1), cardiac hypertrophy, interstitial and perivascular fibrosis, and hypertension.ConclusionsThis study unveils novel cardioprotective effects of RvD1 in angiotensin II-induced hypertension and cardiac remodeling by attenuating inflammation and provides insights into a potential clinical application.  相似文献   

15.
Plasma concentrations of angiotensin II (PAC) were measured in a group of 146 hypertensive patients (diastolic pressure greater than 105 mm Hg) who had no apparent underlying cause for their condition and 113 randomly selected normotensive controls (diastolic pressure less than 90 mm Hg). There was no evidence of bimodality in the frequency distribution curves for plasma angiotensin II concentrations among the hypertensive patients. It was concluded that hypertension associated with low angiotensin II concentration and by implication "low-renin" hypertension is not a condition separate from essential hypertension.  相似文献   

16.
Renal collecting duct (CD)-specific knockout of endothelin-1 (ET-1) causes hypertension and impaired Na excretion. A previous study noted failure to suppress the renin-angiotensin-aldosterone axis in these knockout (KO) mice, hence the current investigation was undertaken to examine the role of this system in CD ET-1 KO. Renal renin content was similar in kidneys from CD ET-1 KO and control mice during normal Na intake; high-Na intake suppressed renal renin content to a similar degree in KO and control. Plasma renin concentrations paralleled changes in renal renin content. Valsartan, an angiotensin receptor blocker (ARB), abolished the hypertension in CD ET-1 KO mice during normal Na intake. High-Na intake + ARB treatment increased blood pressure in CD ET-1 KO, but not in controls. High-Na intake was associated with reduced Na excretion in CD ET-1 KO animals, but no changes in water excretion or creatinine clearance were noted. Spironolactone, an aldosterone antagonist, also normalized blood pressure in CD ET-1 KO mice during normal Na intake, whereas high-Na intake + spironolactone raised blood pressure only in CD ET-1 KO animals. In summary, hypertension in CD ET-1 KO is partly due to angiotensin II and aldosterone. We speculate that CD-derived ET-1 may regulate, via a novel pathway, renal renin production.  相似文献   

17.
Essential hypertension is a complex and multifactorial trait; genetic and environmental factors interact to produce the final phenotype. Studies have demonstrated association of hypertension with varied gene polymorphisms. However, demonstration of common genetic causes in the general population remains elusive. We investigated a possible association between hypertension and haptoglobin, angiotensin I-converting enzyme (ACE), glutathione S-transferases GSTM1 and GSTT1, MnSOD (Val9Ala), CAT (-21A/T), and GPX1 (Pro198Leu) gene polymorphisms in an urban Brazilian population group from Brasília. Although ACE has been reported to be one of the main polymorphisms associated with hypertension, we found no association with ACE's specific genotypes. However, a possible association with Hp1-1 and MnSOD Val/Ala genotypes suggests that, at least for the Brazilian population, polymorphisms related to oxidative stress should be more deeply investigated.  相似文献   

18.
A crosstransplantation study between genetically matched angiotensin AT1 receptor knockout and wild-type mice revealed that renal AT1 receptors are required for the development of angiotensin II-induced hypertension (). However, in this experimental setting, hypertension-related left ventricular hypertrophy seemed to depend on blood pressure elevation rather than on the expression of AT1 receptors in the heart.  相似文献   

19.
Two of the most potent vasoconstrictors, endothelin-1 (ET-1) and angiotensin II (Ang II), are upregulated in fructose hypertensive rats. It is unknown whether an interrelationship exists between these peptides that may contribute to the development of fructose-induced hypertension. The objective of this study was to investigate the existence of an interaction between the endothelin and renin angiotensin systems that may play a role in the development of fructose-induced hypertension. High fructose feeding and treatment with either bosentan, a dual endothelin receptor antagonist, or with L-158,809, an angiotensin type 1 receptor antagonist, were initiated simultaneously in male Wistar rats. Systolic blood pressure, fasted plasma parameters, insulin sensitivity, plasma Ang II, and vascular ET-1-immunoreactivity were determined following 6 weeks of high fructose feeding. Rats fed with a high fructose diet exhibited insulin resistance, hyperinsulinemia, hypertriglyceridemia, hypertension, and elevated plasma Ang II. Treatment with either bosentan or L-158,809 significantly attenuated the rise in blood pressure with no effect on insulin levels or insulin sensitivity in fructose-fed rats. Bosentan treatment significantly reduced plasma Ang II levels, while L-158,809 treatment significantly increased vascular ET-1-immunoreactivity in fructose-fed rats. Thus, treatment with the endothelin receptor antagonist prevented the development of fructose-induced hypertension and decreased plasma Ang II levels. These data suggest that ET-1 contributes to the development of fructose-induced hypertension through modulation of Ang II levels.  相似文献   

20.
TCV-116, a recently developed angiotensin II (Ang II) receptor antagonist, was administered orally (1 mg/kg per day) to 10-week-old spontaneously hypertensive rats (SHR) for 2 weeks. Blood pressure and plasma components of the renin-angiotensin-aldosterone system were determined in these rats. TCV-116 produced a marked reduction in blood pressure without altering heart rate. Whereas plasma renin concentration (PRC), angiotensin I (Ang I) and angiotensin II (Ang II) all were significantly increased, plasma aldosterone was decreased by approximately 70% compared with control animals. These results not only indicate therapeutic efficacy of this agent in the chronic treatment of human hypertension, but support also the concept that the renin-angiotensin system plays an important role in the control of blood pressure in this animal model of human essential hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号