首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of nitrate, the major anaerobic respiratory pathway includes formate dehydrogenase (FDH-N) and nitrate reductase (NAR-A), which catalyze formate oxidation coupled to nitrate reduction. Two aerobically expressed isoenzymes, FDH-Z and NAR-Z, have been recently characterized. Enzymatic analysis of plasmid subclones carrying min 88 of the Escherichia coli chromosome was consistent with the location of the fdo locus encoding FDH-Z between the fdhD and fdhE genes which are necessary for the formation of both formate dehydrogenases. The fdo locus produced three proteins (107, 34, and 22 kDa) with sizes similar to those of the subunits of the purified FDH-N. In support to their structural role, these polypeptides were recognized by antibodies specific to FDH-N. Expression of a chromosomal fdo-uidA operon fusion was induced threefold by aerobic growth and about twofold by anaerobic growth in the presence of nitrate. However, it was independent of the two global regulatory proteins FNR and ArcA, which control genes for anaerobic and aerobic functions, respectively, and of the nitrate response regulator protein NARL. In contrast, a mutation affecting either the nucleoid-associated H-NS protein or the CRP protein abolished the aerobic expression. A possible role for FDH-Z during the transition from aerobic to anaerobic conditions was examined. Synthesis of FDH-Z was maximal at the end of the aerobic growth and remained stable after a shift to anaerobiosis, whereas FDH-N production developed only under anaerobiosis. Furthermore, in an fnr strain deprived of both FDH-N and NAR-A activities, aerobically expressed FDH-Z and NAR-Z enzymes were shown to reduce nitrate at the expense of formate under anaerobic conditions, suggesting that this pathway would allow the cell to respond quickly to anaerobiosis.  相似文献   

2.
Besides formate dehydrogenase N (FDH-N), which is involved in the major anaerobic respiratory pathway in the presence of nitrate, Escherichia coli synthesizes a second isoenzyme, called FDH-O, whose physiological role is to ensure rapid adaptation during a shift from aerobiosis to anaerobiosis. FDH-O is a membrane-bound enzyme complex composed of three subunits, α (FdoG), β (FdoH), and γ (FdoI), which exhibit high sequence similarity to the equivalent polypeptides of FDH-N. The topology of these three subunits has been studied by using blaM (β-lactamase) gene fusions. A collection of 47 different randomly generated Fdo-BlaM fusions, 4 site-specific fusions, and 3 sandwich fusions were isolated along the entire sequence of the three subunits. In contrast to previously reported predictions from sequence analysis, our data suggested that the αβ catalytic dimer is located in the cytoplasm, with a C-terminal anchor for β protruding into the periplasm. As expected, the γ subunit, which specifies cytochrome b, was shown to cross the cytoplasmic membrane four times, with the N and C termini exposed to the cytoplasm. Protease digestion studies of the 35S-labelled FDH-O heterotrimer in spheroplasts add further support to this model. Consistently, prior studies regarding the bioenergetic function of formate dehydrogenase provided evidence for a mechanism in which formate is oxidized in the cytoplasm.  相似文献   

3.
The effects of adding molybdate and selenite to a glucose-minimal salts medium on the formation of enzymes involved in the anaerobic metabolism of formate and nitrate in Escherichia coli have been studied. When cells were grown anaerobically in the presence of nitrate, molybdate stimulated the formation of nitrate reductase and a b-type cytochrome, resulting in cells that had the capacity for active nitrate reduction in the absence of formate dehydrogenase. Under the same conditions, selenite in addition to molybdate was required for forming the enzyme system which permits formate to serve as an effective electron donor for nitrate reduction. When cells were grown anaerobically on a glucose-minimal salts medium without nitrate, active hydrogen production from formate as well as formate dehydrogenase activity depended on the presence of both selenite and molybdate. The effects of these metals on the formation of formate dehydrogenase was blocked by chloramphenicol, suggesting that protein synthesis is required for the increases observed. It is proposed that the same formate dehydrogenase is involved in nitrate reduction, hydrogen production, and in aerobic formate oxidation.  相似文献   

4.
When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities.  相似文献   

5.
Mechanistic studies have been undertaken on the coenzyme F420 dependent formate dehydrogenase from Methanobacterium formicicum. The enzyme was specific for the si face hydride transfer to C5 of F420 and joins three other F420-recognizing methanogen enzymes in this stereospecificity, consistent perhaps with a common type of binding site for this 8-hydroxy-5-deazariboflavin. While catalysis probably occurs by hydride transfer from formate to the enzyme to generate an EH2 species and then by hydride transfer back out to F420, the formate-derived hydrogen exchanged with solvent protons before transfer back out to F420. The kinetics of hydride transfer from formate revealed that this step is not rate determining, which suggests that the rate-determining step is an internal electron transfer. The deflavo formate dehydrogenase was amenable to reconstitution with flavin analogues. The enzyme was sensitive to alterations in FAD structure in the 6-, 7-, and 8-loci of the benzenoid moiety in the isoalloxazine ring.  相似文献   

6.
  1. The dye-linked methanol dehydrogenase from Paracoccus denitrificans grown aerobically on methanol has been purified and its properties compared with similar enzymes from other bacteria. It was shown to be specific and to have high affinity for primary alcohols and formaldehyde as substrate, ammonia was the best activator and the enzyme could be linked to reduction of phenazine methosulphate.
  2. Paracoccus denitrificans could be grown anaerobically on methanol, using nitrate or nitrite as electron acceptor. The methanol dehydrogenase synthesized under these conditions could not be differentiated from the aerobically-synthesized enzyme.
  3. Activities of methanol dehydrogenase, formaldehyde dehydrogenase, formate dehydrogenase, nitrate reductase and nitrite reductase were measured under aerobic and anaerobic growth conditions.
  4. Difference spectra of reduced and oxidized cytochromes in membrane and supernatant fractions of methanol-grown P. denitrificans were measured.
  5. From the results of the spectral and enzymatic analyses it has been suggested that anaerobic growth on methanol/nitrate is made possible by reduction of nitrate to nitrite using electrons derived from the pyridine nucleotide-linked dehydrogenations of formaldehyde and formate, the nitrite so produced then functioning as electron acceptor for methanol dehydrogenase via cytochrome c and nitrite reductase.
  相似文献   

7.
Various dehydrogenases, reductases, and electron transfer proteins involved in respiratory sulfate reduction by Desulfovibrio gigas have been localized with respect to the periplasmic space, membrane, and cytoplasm. This species was grown on a lactate-sulfate medium, and the distribution of enzyme activities and concentrations of electron transfer components were determined in intact cells, cell fractions prepared with a French press, and lysozyme spheroplasts. A significant fraction of formate dehydrogenase was demonstrated to be localized in the periplasmic space in addition to hydrogenase and some c-type cytochrome. Cytochrome b, menaquinone, fumarate reductase, and nitrite reductase were largely localized on the cytoplasmic membrane. Fumarate reductase was situated on the inner aspect on the membrane, and the nitrite reductase appeared to be transmembraneous. Adenylylsulfate reductase, bisulfite reductase (desulfoviridin), pyruvate dehydrogenase, and succinate dehydrogenase activities were localized in the cytoplasm. Significant amounts of hydrogenase and c-type cytochromes were also detected in the cytoplasm. Growth of D. gigas on a formate-sulfate medium containing acetate resulted in a 10-fold increase in membrane-bound formate dehydrogenase and a doubling of c-type cytochromes. Growth on fumarate with formate resulted in an additional increase in b-type cytochrome compared with lactate-sulfate-grown cells.  相似文献   

8.
9.
The participation of distinct formate dehydrogenases and cytochrome components in nitrate reduction by Escherichia coli was studied. The formate dehydrogenase activity present in extracts prepared from nitrate-induced cells of strain HfrH was active with various electron acceptors, including methylene blue, phenazine methosulfate, and benzyl viologen. Certain mutants which are unable to reduce nitrate had low or undetectable levels of formate dehydrogenase activity assayed with methylene blue or phenazine methosulfate as electron acceptor. Of nine such mutants, five produced gas when grown anaerobically without nitrate and possessed a benzyl viologen-linked formate dehydrogenase activity, suggesting that distinct formate dehydrogenases participate in the nitrate reductase and formic hydrogenlyase systems. The other four mutants formed little gas when grown anaerobically in the absence of nitrate and lacked the benzyl viologen-linked formate dehydrogenase as well as the methylene blue or phenazine methosulfate-linked activity. The cytochrome b(1) present in nitrate-induced cells was distinguished by its spectral properties and its genetic control from the major cytochrome b(1) components of aerobic cells and of cells grown anaerobically in the absence of nitrate. The nitrate-specific cytochrome b(1) was completely and rapidly reduced by 1 mm formate but was not reduced by 1 mm reduced nicotinamide adenine dinucleotide; ascorbate reduced only part of the cytochrome b(1) which was reduced by formate. When nitrate was added, the formate-reduced cytochrome b(1) was oxidized with biphasic kinetics, but the ascorbate-reduced cytochrome b(1) was oxidized with monophasic kinetics. The inhibitory effects of n-heptyl hydroxyquinoline-N-oxide on the oxidation of cytochrome b(1) by nitrate provided evidence that the nitrate-specific cytochrome is composed of two components which have different redox potentials but identical spectral properties. We conclude from these studies that nitrate reduction in E. coli is mediated by the sequential operation of a specific formate dehydrogenase, two specific cytochrome b(1) components, and nitrate reductase.  相似文献   

10.
Formate dehydrogenase, a component activity of two alternative electron transport pathways in anaerobic Escherichia coli, has been resolved as two distinguishable enzymes. One, which was induced with nitrate reductase as a component of the formate-nitrate reductase pathway, utilized phenazine methosulfate (PMS) in preference to benzyl viologen (BV) as an artificial electron acceptor and appeared to be exclusively membrane-bound. A second formate dehydrogenase, which was induced as a component of the formate hydrogenlyase pathway, appeared to exist both as a membrane-bound form and as a cytoplasmic enzyme; the cytoplasmic activity was resolved completely from the PMS-linked activity on a sucrose gradient. When E. coli was grown in the presence of 75Se-selenite, a 110,000-dalton selenopeptide, previously shown to be a component of the PMS-linked enzyme, was induced and repressed with this activity. In contrast, an 80,000-dalton selenopeptide was induced and repressed with the BV-linked activity and exhibited a distribution similar to the BV-linked formate dehydrogenase in cell fractions and in sucrose gradients. The results indicate that the two formate dehydrogenases are distinguishable on the basis of their artificial electron acceptor specificity, their cellular localization, and the size of their respective selenoprotein components.  相似文献   

11.
Bacillus subtilis can grow anaerobically by respiration with nitrate as a terminal electron acceptor. In the absence of external electron acceptors, it grows by fermentation. Identification of fermentation products by using in vivo nuclear magnetic resonance scans of whole cultures indicated that B. subtilis grows by mixed acid-butanediol fermentation but that no formate is produced. An ace mutant that lacks pyruvate dehydrogenase (PDH) activity was unable to grow anaerobically and produced hardly any fermentation product. These results suggest that PDH is involved in most or all acetyl coenzyme A production in B. subtilis under anaerobic conditions, unlike Escherichia coli, which uses pyruvate formate lyase. Nitrate respiration was previously shown to require the ResDE two-component signal transduction system and an anaerobic gene regulator, FNR. Also required are respiratory nitrate reductase, encoded by the narGHJI operon, and moaA, involved in biosynthesis of a molybdopterin cofactor of nitrate reductase. The resD and resDE mutations were shown to moderately affect fermentation, but nitrate reductase activity and fnr are dispensable for fermentative growth. A search for genes involved in fermentation indicated that ftsH is required, and is also needed to a lesser extent for nitrate respiration. These results show that nitrate respiration and fermentation of B. subtilis are governed by divergent regulatory pathways.  相似文献   

12.
Incorporation of the electron-transport enzymes of Vibrio succinogenes into liposomes was used to investigate the question of whether, in this organism, a cytochrome b is involved in electron transport from formate to fumarate on the formate side of menaquinone. (1) Formate dehydrogenase lacking cytochrome b was prepared by splitting the cytochrome from the formate dehydrogenase complex. The enzyme consisted of two different subunits (Mr 110 000 and 20 000), catalyzed the reduction of 2,3-dimethyl-1,4-naphthoquinone by formate, and could be incorporated into liposomes. (2) The modified enzyme did not restore electron transport from formate to fumarate when incorporated into liposomes together with vitamin K-1 (instead of menaquinone) and fumarate reductase complex. In contrast, restoration was observed in liposomes that contained formate dehydrogenase with cytochrome b (Em = -224 mV), in addition to the subunits mentioned above (formate dehydrogenase complex). (3) In the liposomes containing formate dehydrogenase complex and fumarate reductase complex, the response of the cytochrome b of the formate dehydrogenase complex was consistent with its interaction on the formate side of menaquinone in a linear sequence of the components. The low-potential cytochrome b associated with fumarate reductase complex was not reducible by formate under any condition. It is concluded that the low-potential cytochrome b of the formate dehydrogenase complex is an essential component in the electron transport from formate to menaquinone. The low-potential cytochrome b of the fumarate reductase complex could not replace the former cytochrome in restoring electron-transport activity.  相似文献   

13.
The molybdopterin cofactor from the formate dehydrogenase of Methanobacterium formicicum was studied. The cofactor was released by guanidine denaturation of homogeneous enzyme, which also released greater than 80% of the molybdenum present in the enzyme. The anoxically isolated cofactor was nonfluorescent, but after exposure to air it fluoresced with spectra similar to those of described molybdopterin cofactors. Aerobic release from acid-denatured formate dehydrogenase in the presence of I2 and potassium iodide produced a mixture of fluorescent products. Alkaline permanganate oxidation of the mixture yielded pterin-6-carboxylic acid as the only detectable fluorescent product. The results showed that the cofactor from formate dehydrogenase contained a pterin nucleus with a 6-alkyl side chain of unknown structure. Covalently bound phosphate was also present. The isolated cofactor was unable to complement the cofactor-deficient nitrate reductase of the Neurospora crassa nit-1 mutant.  相似文献   

14.
Summary The levels of several redox enzymes in a chlorate-resistant mutant of Proteus mirabilis, which is partially affected in the formation of formate hydrogenlyase, thiosulfate reductase and tetrathionate reductase, were compared with those of the wild type. The composition of the electron transport system of both strains was almost the same in cells grown aerobically, but very different in cells grown anaerobically. In the mutant, the cytochrome content increased twofold, whereas the level of the anaerobic enzymes is strongly diminished. The anaerobic formation of electron transport components in the mutant was, in contrast to that of the wild type, not influenced significantly by azide. During anaerobic growth with nitrate low levels of a functional nitrate reductase system were formed in the mutant. Under these conditions the formation of formate dehydrogenase, formate hydrogenlyase, formate oxidase, thiosulfate reductase, tetrathionate reductase, cytochrome b563,5 and partly that of cytochrome a2, was repressed. The repressive effect of nitrate, however, was completely abolished by azide. Therefore, it seems likely that a functional nitrate reductase system, rather than nitrate, controls the formation of the enzymes repressible by nitrate.  相似文献   

15.
The rumen bacterium Wolinella succinogenes grows by respiratory nitrate ammonification with formate as electron donor. Whereas the enzymology and coupling mechanism of nitrite respiration is well known, nitrate reduction to nitrite has not yet been examined. We report here that intact cells and cell fractions catalyse nitrate and chlorate reduction by reduced viologen dyes with high specific activities. A gene cluster encoding components of a putative periplasmic nitrate reductase system (napA, G, H, B, F, L, D) was sequenced. The napA gene was inactivated by inserting a kanamycin resistance gene cassette. The resulting mutant did not grow by nitrate respiration and did not reduce nitrate during growth by fumarate respiration, in contrast to the wild type. An antigen was detected in wild-type cells using an antiserum raised against the periplasmic nitrate reductase (NapA) from Paracoccus pantotrophus. This antigen was absent in the W. succinogenes napA mutant. It is concluded that the periplasmic nitrate reductase NapA is the only respiratory nitrate reductase in W. succinogenes, although a second nitrate-reducing enzyme is apparently induced in the napA mutant. The nap cluster of W. succinogenes lacks a napC gene whose product is thought to function in quinol oxidation and electron transfer to NapA in other bacteria. The W. succinogenes genome encodes two members of the NapC/NirT family, NrfH and FccC. Characterization of corresponding deletion mutants indicates that neither of these two proteins is required for nitrate respiration. A mutant lacking the genes encoding respiratory nitrite reductase (nrfHA) had wild-type properties with respect to nitrate respiration. A model of the electron transport chain of nitrate respiration is proposed in which one or more of the napF, G, H and L gene products mediate electron transport from menaquinol to the periplasmic NapAB complex. Inspection of the W. succinogenes genome sequence suggests that ammonia formation from nitrate is catalysed exclusively by periplasmic respiratory enzymes.  相似文献   

16.
Escherichia coli can perform two modes of formate metabolism. Under respiratory conditions, two periplasmically-located formate dehydrogenase isoenzymes couple formate oxidation to the generation of a transmembrane electrochemical gradient; and under fermentative conditions a third cytoplasmic isoenzyme is involved in the disproportionation of formate to CO2 and H2. The respiratory formate dehydrogenases are redox enzymes that comprise three subunits: a molybdenum cofactor- and FeS cluster-containing catalytic subunit; an electron-transferring ferredoxin; and a membrane-integral cytochrome b. The catalytic subunit and its ferredoxin partner are targeted to the periplasm as a complex by the twin-arginine transport (Tat) pathway. Biosynthesis of these enzymes is under control of an accessory protein termed FdhE. In this study, it is shown that E. coli FdhE interacts with the catalytic subunits of the respiratory formate dehydrogenases. Purification of recombinant FdhE demonstrates the protein is an iron-binding rubredoxin that can adopt monomeric and homodimeric forms. Bacterial two-hybrid analysis suggests the homodimer form of FdhE is stabilized by anaerobiosis. Site-directed mutagenesis shows that conserved cysteine motifs are essential for the physiological activity of the FdhE protein and are also involved in iron ligation.  相似文献   

17.
Kinetic parameters of the selenium-containing, formate dehydrogenase component of the Escherichia coli formate-hydrogenlyase complex have been determined with purified enzyme. A ping-pong Bi Bi kinetic mechanism was observed. The Km for formate is 26 mM, and the Km for the electron-accepting dye, benzyl viologen, is in the range 1-5 mM. The maximal turnover rate for the formate-dependent catalysis of benzyl viologen reduction was calculated to be 1.7 x 10(5) min-1. Isotope exchange analysis showed that the enzyme catalyzes carbon exchange between carbon dioxide and formate in the absence of other electron acceptors, confirming the ping-pong reaction mechanism. Dissociation constants for formate (12.2 mM) and CO2 (8.3 mM) were derived from analysis of the isotope exchange data. The enzyme catalyzes oxidation of the alternative substrate deuterioformate with little change in the Vmax, but the Km for deuterioformate is approximately three times that of protioformate. This implies formate oxidation is not rate-limiting in the overall coupled reaction of formate oxidation and benzyl viologen reduction. The deuterium isotope effect on Vmax/Km was observed to be approximately 4.2-4.5. Sodium nitrate was found to inhibit enzyme activity in a competitive manner with respect to formate, with a Ki of 7.1 mM. Sodium azide is a noncompetitive inhibitor with a Ki of about 80 microM.  相似文献   

18.
Organoautotrophic growth of Alcaligenes eutrophus on formate was dependent on the presence of molybdate in the medium. Supplementation of the medium with tungstate lead to growth cessation. Corresponding effects of these anions were observed for the activity of the soluble, NAD(+)-linked formate dehydrogenase (S-FDH; EC 1.2.1.2) of the organism. Lack of molybdate or presence of tungstate resulted in an almost complete loss of S-FDH activity. S-FDH was purified to near homogeneity in the presence of nitrate as a stabilizing agent. The native enzyme exhibited an M(r) of 197,000 and a heterotetrameric quaternary structure with nonidentical subunits of M(r) 110,000 (alpha), 57,000 (beta), 19,400 (gamma), and 11,600 (delta). It contained 0.64 g-atom of molybdenum, 25 g-atom of nonheme iron, 20 g-atom of acid-labile sulfur, and 0.9 mol of flavin mononucleotide per mol. The fluorescence spectrum of iodine-oxidized S-FDH was nearly identical to the form A spectrum of milk xanthine oxidase, proving the presence of a pterin cofactor. The molybdenum-complexing cofactor was identified as molybdopterin guanine dinucleotide in an amount of 0.71 mol/mol of S-FDH. Apparent Km values of 3.3 mM for formate and 0.09 mM for NAD+ were determined. The enzyme coupled the oxidation of formate to a number of artificial electron acceptors and was strongly inactivated by formate in the absence of NAD+. It was inhibited by cyanide, azide, nitrate, and Hg2+ ions. Thus, the enzyme belongs to a new group of complex molybdo-flavo Fe-S FDH that so far has been detected in only one other aerobic bacterium.  相似文献   

19.
Escherichia coli was grown under various culture conditions. Variations in the levels of formate dehydrogenase which reacts with methylene blue (MB) or phenazine methosulfate (PMS) (N enzyme), formate dehydrogenase which reacts with benzyl viologen (BV) (H enzyme), formate oxidase and hydrogenlyase were analyzed. It was observed that formate dehydrogenase N and formate oxidase were induced by nitrate and repressed by oxygen. Synthesis of formate dehydrogenase H and hydrogenlyase was induced by formate and repressed by nitrate and oxygen. Selenite was required for the biosynthesis of formate dehydrogenase H and hydrogenlyase. Activity of both formate oxidase and hydrogenlyase was inhibited by azide and KCN but not by N-heptyl hydroxyquinoline-N-oxide (HOQNO); on the other hand, formate oxidase was extremely sensitive to HOQNO. Data were obtained which suggest that cytochromes are not involved in hydrogen formation from formate. Part of this work was carried out when the senior author was visiting Research Biologist in the Laboratory of Dr. J. A. de Mosss at the University of California, San Diego. Thanks are given to Dr. De Moss for his hospitality and advise and to Dr. Warren Butler of the University of California, San Diego for making available his spectrophotometer to carry out cytochrome analyses. Most of this work was sustained by a grant from the Research Corporation, Brown Hazen Fund and the financial help of the C.O.F.A.A. from the Instituto Politécnico Nacional.  相似文献   

20.
The membrane-bound respiratory particle complex of Pseudomonas aeruginosa, which reduces nitrate to nitrite using formate as the electron donor, was prepared and characterized by e.p.r. and low-temperature magnetic c.d. (m.c.d.) spectroscopy. The particle complex has two enzymic components, namely nitrate reductase (NiR) and formate dehydrogenase (FDH), which are multi-centred proteins containing molybdenum, iron-sulphur clusters and cytochrome. By using results from work on the purified extracted enzymes NiR and FDH to aid in the assignment, it has been possible to observe spectroscopically all the components of the electron-transfer chain in the intact particle. This led to a proposal for the organization of the metal components of the FDH-NiR chain. Molybdenum ions are at opposite ends of the chain and interact with, respectively, the formate-CO2 couple and the nitrate-nitrite couple. The molybdenum ion at the low-potential end of the chain passes electrons to cytochrome b of FDH, a bishistidine-co-ordinated haem with unusual steric restraint at the iron. The next component is a [4Fe-4S] cluster. This comprises all the components of FDH. Electrons are passed to the molybdenum of NiR via a number, probably two, of [4Fe-4S] clusters. No evidence has been found in this work for the presence of a quinone to mediate electron transfer between FDH and NiR. Cytochrome c appears to be able to feed electrons into the chain at the level of one of the [4Fe-4S] centres of NiR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号