首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF) are considered as important mediators for the modulation of liver synthesis of acute phase proteins. However, studies of the direct effect of individual or a combination of these cytokines on the synthesis of acute phase proteins in human hepatocytes are still very limited. In this study, we have examined the synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes exposed to recombinant(r)IL-1 alpha (100 U/ml), rIL-6 (2000 U/ml), rTNF alpha (30 U/ml) and to various combinations of these cytokines in the presence of 1 microM dexamethasone. Monoclonal antibodies to rTNF alpha and monospecific anti-rIL-6 sheep antiserum were also used to investigate the possible endogenous production of TNF or IL-6. The findings indicate: (1) IL-1 and IL-6 are stimulatory cytokines for the liver synthesis of CRP and SAA. Anti IL-6 abolishes the stimulatory effect of IL-1. These findings support the previous observation and indicate that IL-1 exerts its action on the enhanced synthesis of CRP and SAA at least in part via IL-6 production in the liver cell. (2) TNF is an inhibitory cytokine for the liver synthesis of CRP. It inhibits also the stimulatory effect of IL-1 and IL-6 on the synthesis of CRP and SAA. (3) Since anti-TNF enhances the stimulatory effect of IL-6 on the synthesis of CRP and SAA, it seems likely that TNF is also produced by the human hepatocytes. However, further studies for more direct evidence of the liver cell production of TNF, such as the detection of TNF messenger RNA are required.  相似文献   

2.
We have previously shown that induction of synthesis of the two major human acute phase proteins, serum amyloid A (SAA) and C-reactive protein (CRP), can be accomplished in the human hepatoma cell line Hep 3B, in the presence of dexamethasone, either by conditioned medium from LPS-stimulated monocytes or by the combination of IL-6 and IL-1. Neither of these cytokines alone caused significant induction of either SAA or CRP. In the present study we extended our earlier observations by evaluating the role of dexamethasone, the effect of different concentrations of IL-6 and IL-1 alpha in combination, and the possible role of TNF-alpha in regulating synthesis of SAA and CRP. Dexamethasone alone had no effect on induction of SAA or CRP. Incubation of Hep 3B cells with conditioned medium from LPS-stimulated monocytes, in the absence of dexamethasone, led to modest induction of SAA or CRP, but addition of dexamethasone potentiated this response in a dose-dependent manner. Similar results were obtained for the effect of dexamethasone on the induction of SAA by IL-6 plus IL-1 alpha. Checkerboard titration of IL-6 and IL-1 alpha revealed that increases in concentration of either cytokine led to dose-related increases in synthesis of both SAA and CRP as long as a minimal amount of the other cytokine was present. TNF-alpha alone had no significant effect on synthesis of either SAA or CRP, but the combination of IL-6 plus TNF-alpha led to substantial induction of SAA. This combination was less effective than the combination of IL-6 plus IL-1 alpha. No detectable effect of IL-6 plus TNF-alpha was observed on CRP synthesis. Both combinations of cytokines, IL-6 plus IL-1 alpha, and IL-6 plus TNF-alpha, caused increased SAA mRNA accumulation that roughly paralleled increase in synthesis. These data indicate that IL-6, IL-1 alpha, TNF-alpha, and dexamethasone in various combinations are all capable of influencing synthesis of SAA in Hep 3B cells, whereas only IL-6, IL-1 alpha, and dexamethasone can influence CRP synthesis.  相似文献   

3.
Because a number of different cytokines have been reported to regulate the synthesis of human, murine, and rat acute phase proteins (APP), we studied the effect of cytokines on production of several major human APP in a single system, the human hepatoma cell line Hep 3B. Conditioned medium (CM) prepared from human blood monocytes activated with LPS in the presence of dexamethasone led to substantial induction of serum amyloid A (SAA) and C-reactive protein (CRP) synthesis whereas the defined cytokines IL-1 beta, TNF alpha, and medium from a human keratinocyte cell line (COLO-16), containing hepatocyte-stimulating factor activity, failed to induce these two major APP. Induction of SAA and CRP was accompanied by an increase in concentration of their specific mRNA. Size fractionation of CM from activated monocytes by fast protein liquid chromatography indicated that SAA- and CRP-inducing activity eluted as a single peak with a Mr of approximately 18 kDa. alpha 1-Antitrypsin, which also failed to respond to IL-1 beta or TNF alpha, was induced by both CM and medium from COLO-16 cells. The induction of AT by CM was accompanied by an increase in specific mRNA. Induction of ceruloplasmin and alpha 1-antichymotrypsin and decrease in the synthesis of albumin was achieved by both CM and IL-1 beta. Ceruloplasmin and albumin responded in a comparable fashion to both TNF alpha and medium from COLO-16 cells; the response of ACT to these cytokines was not evaluated. These results indicate that human SAA and CRP are induced in Hep 3B cells by products of activated monocytes but not by IL-1 beta, TNF-alpha, or some hepatocyte-stimulating factor preparations and that a group of heterogeneous mechanisms are involved in the induction of the various human APP.  相似文献   

4.
To determine why germfree mice are less susceptible to lipopolysaccharide (LPS) than conventional mice, we studied serum levels of serum amyloid A (SAA), tumor necrosis factor (TNF), interleukin 1 (IL-1), IL-6, and corticosterone in mice after treatment with LPS. A single injection of LPS caused an elevation of SAA, an acute-phase protein in the mouse, in both conventional and germfree IQI mice, and the response was significantly less in germfree mice. LPS-induced elevations of serum TNF, IL-1, and IL-6 levels were also significantly less in germfree mice, while serum corticosterone levels were greater in germfree mice than in conventional mice. These results suggest that the lower susceptibility to LPS and a smaller response of SAA elevation by LPS in germfree mice may result from less elevation in serum of these cytokines in these mice, which are known to mediate the acute phase response of SAA. High levels of serum corticosterone in germfree mice may be partly responsible for the lower responsiveness of these inflammatory cytokines to LPS in these mice.  相似文献   

5.
BACKGROUND: The receptor of ciliary neurotrophic factor (CNTF) contains the signal transduction protein gp130, which is also a component of the receptors of cytokines such as interleukin (IL)-6, leukemia-inhibitory factor (LIF), IL-11, and oncostatin M. This suggests that these cytokines might share common signaling pathways. We previously reported that CNTF augments the levels of corticosterone (CS) and of IL-6 induced by IL-1 and induces the production of the acute-phase protein serum amyloid A (SAA). Since the elevation of serum CS is an important feedback mechanism to limit the synthesis of proinflammatory cytokines, particularly tumor necrosis factor (TNF), we have investigated the effect of CNTF on both TNF production and lipopolysaccharide (LPS) toxicity. MATERIALS AND METHODS: To induce serum TNF levels, LPS was administered to mice at 30 mg/kg i.p. and CNTF was administered as a single dose of 10 micrograms/mouse i.v., either alone or in combination with its soluble receptor sCNTFR alpha at 20 micrograms/mouse. Serum TNF levels were the measured by cytotoxicity on L929 cells. In order to measure the effects of CNTF on LPS-induced TNF production in the brain, mice were injected intracerebroventricularly (i.c.v.) with 2.5 micrograms/kg LPS. Mouse spleen cells cultured for 4 hr with 1 microgram LPS/ml, with or without 10 micrograms CNTF/ml, were also analyzed for TNF production. RESULTS: CNTF, administered either alone or in combination with its soluble receptor, inhibited the induction of serum TNF levels by LPS. This inhibition was also observed in the brain when CNTF and LPS were administered centrally. In vitro, CNTF only marginally affected TNF production by LPS-stimulated mouse splenocytes, but it acted synergistically with dexamethasone (DEX) in inhibiting TNF production. Most importantly, CNTF administered together with sCNTFR alpha protected mice against LPS-induced mortality. CONCLUSIONS: These data suggest that CNTF might act as a protective cytokine against TNF-mediated pathologies both in the brain and in the periphery.  相似文献   

6.
TNF, IL-1, and IL-6 are integral components of the cytokine cascade released in the response to inflammatory stimuli such as LPS. IL-8 is produced both in response to LPS as well as TNF and IL-1. The early, local production of TNF and IL-1 may therefore contribute to the subsequent expression of IL-8. This hypothesis was tested using LPS-stimulated human whole blood as an ex vivo model of local cytokine production. The production of TNF, IL-1 alpha, IL-1 beta, IL-6, and IL-8 was found to be responsive to a wide range of LPS concentrations (0.1 ng/ml-10 micrograms/ml). These cytokines were first detected between 1 to 4 h post-LPS stimulation, and reached plateau levels after 6 to 12 h. IL-8, however, also displayed a secondary wave of production, with the levels again increasing between 12 to 24 h. The IL-8 present in the plasma after LPS stimulation was biologically active, as assessed by neutrophil chemotaxis. In further studies, addition of anti-TNF and anti-IL-1 neutralizing antibodies, alone and in combination, to LPS-stimulated blood resulted in nearly complete ablation of the secondary phase of IL-8 synthesis at both the levels of protein and mRNA, while leaving the first, LPS-mediated phase of IL-8 synthesis unaffected. This model of cytokine production in human whole blood may reflect the sequence of events in a localized environment of inflammation where both a primary stimulus and the induced early cytokine mediators may serve to elicit multiple, temporally distinct phases of IL-8 production.  相似文献   

7.
Production of interleukin 1 beta (IL-1 beta), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), interleukin 2 (IL-2), interferon gamma (IFN-gamma) and granulocyte-macrophage colony-stimulating factor (GM-CSF) after stimulation by lipopolysaccharide (LPS) and phytohemagglutinin (PHA) was studied in 1/10 diluted whole blood (WB) culture and in peripheral blood mononuclear cell (PBMC) culture. Cytokines IL-1 beta, TNF-alpha and IL-6 are preferentially stimulated by LPS whereas IL-2, IFN-gamma and GM-CSF are stimulated by PHA. Combination of 5 micrograms/ml PHA and 25 micrograms/ml LPS gave the most reliable production of the six cytokines studied. IL-1 beta, TNF-alpha and IL-6 represent a homogeneous group of early-produced cytokines positively correlated among themselves and with the number of monocytes in the culture (LeuM3). Furthermore, IL-1 beta was negatively correlated with the number of T8 lymphocytes. IL-2, IFN-gamma and GM-CSF represent a group of late-produced cytokines. Kinetics and production levels of IL-6 and GM-CSF are similar in WB and PBMC cultures. In contrast, production levels of TNF-alpha and IFN-gamma are higher in WB than in PBMC whereas production levels of IL-6 and IL-2 are lower in WB than in PBMC. Individual variation in responses to PHA + LPS was always higher in PBMC cultures than in WB cultures. The capacity of cytokine production in relation to the number of mononuclear cells is higher in WB, or in PBMC having the same mononuclear cell concentration as WB, than in conventional cultures of concentrated PBMC (10(6)/ml). Because it mimics the natural environment, diluted WB culture may be the most appropriate milieu in which to study cytokine production in vitro.  相似文献   

8.
To specify the role of individual cytokines in the immune response to pyrogens, isolated and cultivated human peripheral blood mononuclear cells (PBMC) were used for the experiments. Different pyrogens (lipopolysaccharide from Escherichia coli - LPS and live Borrelia afzelii) were applied and the time course of changes in concentrations of different cytokines in the medium was followed using the ELISA method. It was found that nonstimulated human PBMC proliferate under in vitro conditions and produce IL-6, TNF-alpha, IL-10 and finally also IL-1 beta. Productions of IL-12 and INF-gamma are not changed. Proliferation of PBMC is potentiated after incubation with LPS or live Borrelia. PBMC stimulated by LPS increase the net production (stimulated minus unstimulated) of IL-1 beta and TNF-alpha significantly, while production of IL-6 was smaller. A delayed increase in the production of IL-10 was also observed. Productions of IL-12 and INF-gamma were not influenced. In contrast to LPS, stimulation of PBMC with live Borrelia, increases also the production of IL-12 and IFN-gamma, besides IL-1 beta, TNF-alpha, IL-6 and IL-10. Productions of IL-1 beta, IL-6 and TNF alpha increased immediately after incubation with both LPS and Borrelia, while productions of IL-12 and INF-gamma begin to increase 8 hours and production of IL-10 12 hours after stimulation. Data indicate that stimulation with different pyrogens may activate the cells of the immune cascade in a different way. Stimulation of BPMC by LPS seems to activate the initial steps of the immune response (macrophages and granulocytes) only, while infection with live Borrelia also stimulates the later phase of the immune response, probably due to effect of initially produced cytokines.  相似文献   

9.
This study examined the mechanisms underlying the intense activation of HIV-1-specific B cells observed in peripheral blood of HIV-1-infected subjects. Spontaneous in vitro synthesis of anti-HIV-1 antibodies, as well as total Ig production, were dramatically reduced by accessory cell, but not T cell removal. This fall was counteracted by addition of rIL-6, but not other cytokines, to monocyte-depleted cultures; moreover, antisera against IL-6 suppressed spontaneous anti-HIV-1 antibody synthesis in a dose-dependent manner. Although IL-6 apparently sustained HIV-1-specific B cell activation, no increase in serum IL-6 levels was observed; PBMC from seropositive subjects did not produce increased amounts of IL-6 in vitro, compared to seronegative controls, both spontaneously and in the presence of LPS stimulation; finally, no constitutive expression of IL-6 gene could be documented in freshly isolated PBMC. These findings indicate that IL-6 may play a central role in HIV-1-specific B cell activation in seropositive patients, and further stress the importance of this cytokine during HIV-1 infection.  相似文献   

10.
11.
Glucocorticoids are potent inhibitors of inflammation and endotoxic shock. This probably occurs through an inhibition of the synthesis of pro-inflammatory cytokines as well as of many of their toxic activities. Therefore, endogenous glucocorticoids (GC) might represent a major mechanism in the control of cytokine mediated pathologies. GC inhibit the synthesis of cytokines in various experimental models. Adrenalectomy or GC antagonists potentiate TNF, IL-1 and IL-6 production in LPS treated mice. GC inhibit the formation of arachidonic acid metabolites and the induction of NO synthase. They also inhibit various activities of cytokines including toxicity, haemodynamic shock and fever. Adrenalectomy sensitizes to the toxic effects of LPS, TNF and IL-1. On the other hand, GC potentiate the synthesis of several cytokine induced APP by the liver. Since many of these proteins have anti-toxic activities (antioxidant, antiprotease etc.) or bind cytokines, this might well represent a GC mediated protective feedback mechanism involving the liver. Not only do GC inhibit cytokines, but in vivo LPS and various cytokines (TNF, IL-1, IL-6) increase blood GC levels through a central mechanism involving the activation of the HPA. Thus, this neuroendocrine response to cytokines constitutes an important immunoregulatory feedback involving the brain.  相似文献   

12.
The development of LPS tolerance has been suggested to be mediated by an inhibition of cytokine synthesis. Here we have studied serum IL-6 and TNF levels in mice after LPS administration. Repeated administration of LPS (35 micrograms daily for 4 days) to mice induced a refractoriness (tolerance) to subsequent administrations of LPS in terms of induction of circulating IL-6 and TNF. To investigate the mechanism by which LPS down-regulates its own induction of cytokine synthesis and the relationship between IL-6 and TNF production, we attempted to revert the inhibition of IL-6 and TNF production using agents like PMA or IFN-gamma, previously reported to activate macrophage production of cytokines. Pretreatment with PMA (4 micrograms, 10 min before LPS) partially restored IL-6 production in LPS-tolerant mice given 2 micrograms LPS. On the other hand, PMA did not restore TNF induction in LPS-tolerant mice, even when administered with high doses of LPS (up to 200 micrograms). A similar reversal of LPS resistance to IL-6, but not TNF, induction by PMA was observed in genetically LPS-resistant C3H/HeJ mice. IFN-gamma also restored, although to a lesser extent than PMA, IL-6 production. However, unlike PMA, IFN-gamma could also partially restore TNF production in LPS-tolerant mice, although only when LPS was administered at high doses. By contrast with PMA, IFN-gamma was clearly more active in restoring TNF synthesis than that of IL-6. Similar results were obtained in genetically LPS-unresponsive C3H/HeJ mice. These data suggest that different mechanisms are implicated in the inhibition of IL-6 and TNF synthesis in LPS-tolerant mice and that part of this inhibition can be overcome by PMA or IFN-gamma.  相似文献   

13.
Taurolidine (Geistlich Pharm, AG, Wolhusen, Switzerland), a derivative of the amino acid taurine, is commonly used in some parts of the world as an adjunctive therapy for various infections. Its mechanism of action is thought to be related to its antimicrobial properties, including its ability to interfere with some of the biological activities of endotoxin (lipopolysaccharide, LPS). For example, taurolidine has been shown to protect animals against endotoxic shock and death. In this study we examined the ability of taurolidine to block LPS-induced tumor necrosis factor (TNF) and interleukin 1 (IL-1) synthesis in human peripheral blood mononuclear cells (PBMC) from 27 donors. We observed a dose-dependent reduction in the synthesis of these two cytokines when taurolidine was preincubated with LPS before being added to PBMC. This reduction was independent of the molar ratio of taurolidine to LPS but was related to the concentration of taurolidine present in the PBMC cultures. There was a 80 to 90% reduction in total IL-1 and TNF synthesis induced by LPS at concentrations of taurolidine of 40 to 100 micrograms/mL; the vehicle was without effect. Following a 30-min preincubation with PBMC, taurolidine could be washed from the cells and still suppress cytokine synthesis induced by LPS. Using release of lactic acid dehydrogenase, 100 micrograms/mL of taurolidine was not toxic for PBMC. Taurolidine also reduced IL-1 and TNF synthesis induced by the Staphylococcus aureus-derived toxic shock syndrome toxin-1 as well as that induced by nontoxic heat-killed Staphylococcus epidermidis organisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Inhibition of interleukin 1 synthesis by tenidap: a new drug for arthritis   总被引:1,自引:0,他引:1  
Tenidap is a new antiarthritic drug of novel chemical structure. This study shows the effects of tenidap on the in vitro synthesis of interleukin 1 (IL-1). IL-1 production by murine peritoneal macrophages was induced either by stimulation with lipopolysaccharide (LPS) or by phagocytosis of zymosan. With either stimulus, tenidap inhibited IL-1 production as measured by a quantitative competitive IL-1 receptor binding assay. Approximately 20 ng/mL of IL-1 was produced by 10(6) macrophages in response to LPS and about half that amount was produced in response to zymosan. Fifty percent inhibition of IL-1 production by tenidap was found at 3 microM for both stimuli. Using goat anti-IL-1 alpha and Western blot analysis, the appearance of intracellular 34 kDa pro-IL-1 alpha was inhibited by tenidap down to 3 microM. Tenidap decreased [35S]Met incorporation into cellular protein at 30 microM but not at 10 or 3 microM, indicating selectivity for IL-1 inhibition relative to total protein synthesis. Because tenidap inhibited IL-1 induction by both zymosan and LPS, it must act subsequently to receptor triggering. As the appearance of IL-1 was inhibited both intracellularly and extracellularly, the primary drug effect cannot be on secretion.  相似文献   

15.
Abstract Endotoxin (lipopolysaccharide, LPS) induces the production of mediators of inflammation, which exerts pathophysiological effects such as fever or shock in mammals. In the present study we have investigated the modulation of LPS by the synthetic non-active tetraacylated precursor Ia of lipid A (compound 406) in the induction of tumor necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 6 (IL-6) in human peripheral blood mononuclear cells (PBMC) and in human peripheral blood monocytes (PBMo). PBMC stimulated with LPS released TNF in a concentration dependent manner. Release of biologically active TNF, IL-1 and IL-6 was first detectable 4 h after LPS stimulation. Compound 406 alone in all concentrations tested did not induce TNF, IL-1 or IL-6 release, intracellular TNF or IL-1β, or mRNA for TNF or IL-1. Added to PBMC 1 h before LPS compound 406 enhanced or suppressed TNF release and suppressed IL-1 and IL-6 release depending on the ratio of concentrations between stimulator (LPS) and modulator (compound 406). In contrast to LPS stimulation alone TNF, IL-1 and IL-6 release in presence of compound 406 was delayed and first detectable after 6 to 8 h. Compound 406 was able to suppress LPS-induced intracellular TNF and IL-1β in PBMC. Added to PBMo 1 h before LPS it totally inhibited the production of mRNA for TNF and IL-1. When added to PBMC 1 h after LPS, TNF release was suppressed in a concentration-dependent way and release of biologically active TNF, IL-1 and IL-6 could again be detected for the first time after 4 h. Compound 406 was not able to inhibit phorbol 12-myristate 13-acetate (PMA)-induced TNF and IL-1 release in PBMo which suggests that its modulating effect is LPS-specific. This study provides evidence that the modulating effect of compound 406 on the LPS induction of TNF, IL-, 1 and IL-6 could be due to competitive binding.  相似文献   

16.
17.
The hepatic acute phase response induced by the administration of interleukin (IL)-2 is most likely mediated by secondary cytokines. In this investigation, we examined the role of endogenous IL-1 in the synthesis of the hepatic acute phase protein serum amyloid A (SAA) during IL-2 treatment. The injection of IL-2 induced SAA gene expression in the liver. The concurrent administration of an IL-1 receptor antagonist (IL-1RA) markedly reduced hepatic SAA mRNA levels and, to a lesser extent, SAA protein levels in the serum. Although IL-1 is an inducer of IL-6 production, the administration of the IL-1RA had no effect on circulating IL-6 levels in IL-2-treated mice. These findings suggest that the production of IL-1 is an important factor in the induction of SAA mRNA in mice undergoing immunotherapy with IL-2.  相似文献   

18.
19.
20.
An overproduction of proinflammatory cytokines mediates the damaging sequelae of inflammation in pathologic conditions such as rheumatoid arthritis, graft-vs-host reaction, cachexia, and sepsis syndrome. We examined the cytokine regulatory activity of synthetic melanin, exemplified by biosynthetic l-glycine-l-tyrosine-based polymer (ME-1) and chemosynthetic dihydroxyphenylalanine-based polymer (MC-1). At nontoxic concentrations, both compounds effectively (>/=60%) and reversibly suppressed the production of tumor necrosis factor (TNF), even when applied after stimulation of human peripheral blood monocytes with lipopolysaccharide (LPS). The inhibitory activity of melanin was selective with regard to cytokine response but not inducer- or cell-type-specific. In addition to TNF, melanin inhibited production of interleukin (IL)-1beta, IL-6, and IL-10 but not granulocyte-macrophage colony-stimulating factor by the LPS-stimulated monocytes. Melanin was equally effective in inhibiting production of TNF by monocytes stimulated with the purified protein derivative of Mycobacterium tuberculosis and production of IL-6 by IL-1alpha-stimulated human fibroblasts and endothelial cells. Northern blot analysis, mRNA stability determination, immunoprecipitation studies on metabolically labeled intracellular TNF, and pulse chase experiments revealed that melanin reduced efficiency of mRNA translation. The finding that melanin arrests ongoing cytokine synthesis suggests that this compound may be useful as an adjunct therapy for conditions showing involvement of proinflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号