首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil   总被引:2,自引:1,他引:1  
Reich, Melvin (The George Washington University School of Medicine, Washington, D.C.), and H. George Mandel. Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil. J. Bacteriol. 91:517-523. 1966.-5-Fluorouracil (FU) produced a marked inhibition of growth and deoxyribonucleic acid (DNA) synthesis in Bacillus cereus 569H. Protein and ribonucleic acid (RNA) synthesis were not specifically inhibited, and proceeded at the rate of turbidometric increase of the cells. Cell-wall synthesis, respiration, and penicillinase production continued in the presence of FU at essentially the control rate. The addition of equimolar concentrations of uracil and FU prevented growth inhibition but did not restore DNA synthesis. The addition of thymidine with FU did not relieve growth inhibition but did restore the DNA content to normal. Thymidine supplementation also increased the quantity of FU, but not uracil, incorporated into RNA and the acid-soluble fraction. The data indicate that inhibition of growth can be dissociated from inhibition of DNA synthesis and that more DNA is present in normal cells than is needed for growth and reproduction.  相似文献   

2.
The lack of a phenotypic alteration of 5-hydroxymethyluracil (hmUra) DNA glycosylase (hmUDG) deficient Chinese hamster V79mut1 cells exposed to DNA-damaging agents known to produce hmUra has raised the question whether there might be DNA substrates other than hmUra for hmUDG. Based on the structural similarity between 5-chlorouracil (ClUra) and hmUra and the observations that 5-chloro-2'-deoxyuridine (CldUrd) induces base excision repair (BER) events, we asked whether hmUDG or some other DNA BER enzyme is responsible for the removal of ClUra from DNA. An in vivo flow cytometry assay with FITC-anti-BrdUrd (which cross-reacts with CldUrd) showed that exogenous CldUrd is incorporated into DNA. However, both in vivo and in vitro experiments indicated that ClUra is not excised from DNA by hmUDG or other DNA glycosylase activities. The absence of removal of ClUra by hmUDG raised the question whether DNA strand breaks occurred subsequent to thymidylate synthase inhibition, leading to deoxyuridine incorporation, followed by cleavage of uracil from DNA by uracil DNA glycosylase (UDG). An in vivo thymidylate synthase activity assay in V79 cells demonstrated that CldUrd treatment inhibits thymidylate synthase as effectively as 5-fluoro-2'-deoxyuridine (FdUrd) treatment. Uracil, a known UDG inhibitor, partially reverses the cytotoxic effects of CldUrd on V79 cells, thus confirming that CldUrd induced cytotoxicity is a result of UDG activity. Our results demonstrated that while CldUrd is not directly repaired from DNA, its cytotoxicity is directly due to the UDG removing uracil subsequent to inhibition of thymidylate synthase by CldUMP.  相似文献   

3.
When heat-activated spores of Bacillus cereus T (thy(-)) were germinated and grown in medium containing (3)H-thymidine, a significant amount of radioactivity was incorporated into ribonucleic acid and deoxyribonucleic acid (DNA). A method was developed to restrict the incorporation of radioactivity from (3)H-thymidine into DNA only. This was accomplished by labeling the cells with (3)H-thymidine in the presence of 2 mg of 2-deoxyadenosine per ml, 250 mug each of uracil, cytosine, and guanosine per ml, and 500 mug of adenosine per ml. Under these conditions, 97% of the radioactivity incorporated into cold trichloroacetic acid-insoluble material was associated with DNA only. In the absence of these compounds, DNA contained only 72% of the total radioactivity incorporated into cold acid-insoluble material.  相似文献   

4.
After starvation for deoxyribosides, the deoxyribonucleic acid (DNA) of Lactobacillus acidophilus is restricted to a localized region of the cell. (3)H-uracil is first incorporated into such a restricted region but subsequently is found throughout the cell. This spread occurs despite the absence of protein synthesis and a major reduction in the rate of ribonucleic acid (RNA) synthesis. However, blocking RNA synthesis with actinomycin D restricts incorporation to a localized region of the cell. It is concluded that uracil is first incorporated into RNA in the bacterial nucleus from which it subsequently spreads through the cell. Actinomycin D could prevent this spread by preventing the completion of RNA molecules, which therefore do not dissociate from the DNA template.  相似文献   

5.
Pyrimidine metabolism in Acinetobacter calcoaceticus   总被引:2,自引:2,他引:0  
The metabolism of thymine, thymidine, uracil, and uridine has been investigated in five different strains of Acinetobacter calcoaceticus. Attempts to isolate thymine and thymidine auxotrophic mutants were not successful. Consistent with this finding was the observation that uptake of radioactive thymine or thymidine could not be demonstrated. Search for enzymes capable of transforming thymine via thymidine to thymidine-5'-monophosphate in crude extracts was performed, and the following enzymes were absent judging from enzyme assays: thymidine phosphorylase (EC 2.4.2.4), trans-N-deoxyribosylase (EC 2.4.2.6), and thymidine kinase (EC 2.7.1.21). The enzymes responsible for the phosphorylation of thymidine-5'-monophosphate to thymidine-5'-triphosphate were present in crude extracts. Radioactive uracil was readily incorporated into both ribonucleic acid and deoxyribonucleic acid, the ratio being 6:1, and radioactivity was found only in pyrimidine bases. No uptake of uridine could be demonstrated. Uridine-5'-monophosphate pyrophosphorylase (EC 2.4.2.9) activity was detected in crude extracts, suggesting that uracil is converted directly to uridine-5'-monophosphate which is then phosphorylated to uridine-5'-triphosphate or transformed to other ribo- and deoxypyrimidine nucleotides.  相似文献   

6.
Bloom's syndrome uracil DNA glycosylase was highly purified from two non-transformed cell strains derived from individuals from different ethnic groups. Their properties were then compared to two different highly purified normal human uracil DNA glycosylases. A molecular mass of 37 kDa was observed for each of the four human enzymes as defined by gel-filtration column chromatography and by SDS-PAGE. Each of the 37 kDa proteins was identified as a uracil DNA glycosylase by electroelution from the SDS polyacrylamide gel, determination of glycosylase activity by in vitro biochemical assay and identification of the reaction product as free uracil by co-chromatography with authentic uracil. Bloom's syndrome enzymes differed substantially in their isoelectric point and were thermolabile as compared to the normal human enzymes. Bloom's syndrome enzymes displayed a different Km, Vmax and were strikingly insensitive to 5-fluorouracil and 5-bromouracil, pyrimidine analogues which drastically decreased the activity of the normal human enzymes. In particular, each Bloom's syndrome enzyme required 10-100-fold higher concentrations of each analogue to achieve comparable inhibition of enzyme activity. Potential mechanisms are considered through which an altered uracil DNA glycosylase characterizing this cancer-prone human genetic disorder may arise.  相似文献   

7.
A "nuclear fraction" prepared from Bacillus subtilis was a more efficient template than purified deoxyribonucleic acid for the synthesis of ribonucleic acid by exogenously added ribonucleic acid polymerase isolated from B. subtilis. The initial rate of synthesis with the nuclear fraction was higher and synthesis continued for several hours, yielding an amount of ribonucleic acid greater than the amount of deoxyribonucleic acid used as the template. The product was heterogenous in size, with a large portion exceeding 23S. When purified deoxyribonucleic acid was the template, a more limited synthesis was observed with a predominantly 7S product. However, the ribonucleic acids produced in vitro from these templates were very similar to each other and to in vivo synthesized ribonucleic acid as determined by the competition of ribonucleic acid from whole cells in the annealing of in vitro synthesized ribonucleic acids to deoxyribonucleic acid. Treatment of the nuclear fraction with heat (60 C for 15 min) or trypsin reduced the capacity of the nuclear fraction to synthesize ribonucleic acid to the level observed with purified deoxyribonucleic acid.  相似文献   

8.
A number of mutants of Escherichia coli defective in the ung gene (structural gene for uracil-deoxyribonucleic acid [ura-DNA] glycosylase) are shown to be abnormally sensitive to treatment with sodium bisulfite when compared with congenic ung+ strains. These results provide further evidence that sodium bisulfite causes the deamination of cytosine to uracil in DNA and that ura-DNA glycosylase is required for the repair of U-G mispairs. The effect of the chemical is apparently selective with respect to base damage; coliphages containing cytosine in their DNA are inactivated by treatment with sodium bisulfite, whereas those containing hydroxymethylcytosine are not. ura-DNA glycosylase and the major apurinic-apyrimidinic endonuclease of E. coli may function in the same repair pathway, since the extent of inactivation of a congenic set of strains which are ung xth (structural gene for the major apurinic-apyrimidinic endonuclease of E. coli) or ung xth+ is the same.  相似文献   

9.
The rate of nitrous acid deamination of labeled cytosine residues in native Escherichia coli deoxyribonucleic acid was monitored in vitro by release of acid-soluble counts after treatment with uracil deoxyribonucleic acid glycosylase. The reaction exhibited a lag and was not stimulate by several agents previously shown to enhance base substitution mutagenesis during nitrous acid treatment of duplex deoxyribonucleic acid. We conclude that a significant proportion of nitrous acid induced mutagenic lesions are novel lesions and not cytosine deaminations.  相似文献   

10.
11.
Plant ribonucleic acids which have high adenosine monophosphate concentrations were studied. Purified deoxyribonucleic acid-like ribonucleic acid and tenaciously bound ribonucleic acid fractions both contained poly-adenosine monophosphate sequences (those from the latter being longer than those from the former); without these poly-adenosine monophosphate sequences their base compositions were the same. The average poly-adenosine monophosphate sequence from purified tenaciously bound ribonucleic acid was 160 residues long, as measured by gel electrophoresis. However, base hydrolysis and chromatography indicated one 3′-nucleoside (adenosine) per 71 nucleotides, giving a chain length of 72 residues. The dominant species in the cytoplasm, as measured by radioactive precursor incorporation, was tenaciously bound ribonucleic acid, whereas deoxyribonucleic acid-like ribonucleic acid was present in greater amounts in the nucleus. This work provides evidence that deoxyribonucleic acid-like ribonucleic acid and tenaciously bound ribonucleic acid represent forms of messenger ribonucleic acid in soybean, with deoxyribonucleic acid-like ribonucleic acid residing in the nucleus, perhaps as the messenger ribonucleic acid precursor, and tenaciously bound ribonucleic acid residing, as the active messenger ribonucleic acid, in the cytoplasm.  相似文献   

12.
Purification and properties of the human placental uracil DNA glycosylase   总被引:5,自引:0,他引:5  
Human placental uracil DNA glycosylase was purified 3700-fold to apparent homogeneity as defined by SDS gel analysis. Its immunological characteristics were examined using three monoclonal antibodies prepared against partially purified human placental uracil DNA glycosylase. Immunoblot analysis demonstrated that, even in crude isolates, only one glycosylase species of molecular weight 37,000 could be detected. Each of the three monoclonal antibodies quantitatively recognized the highly purified enzyme by ELISA. The glycosylase is a single polypeptide with a molecular weight of 37,000 as defined by both Sephadex gel filtration and by SDS-polyacrylamide gel electrophoresis analysis. The enzyme is heat-stable, with a t 1/2 of greater than 30 min at 42 degrees C or at 45 degrees C. Surprisingly, inhibitor analysis demonstrated that the glycosylase was inhibited by preincubation with either 5-fluorouracil or 5-bromouracil. However, no significant inhibition was observed when either compound was added directly to the enzyme assay.  相似文献   

13.
Uracil-DNA glycosylase from rat liver mitochondria, an inner membrane protein, has been purified approximately 575,000-fold to apparent homogeneity. During purification two distinct activity peaks, designated form I and form II, were resolved by phosphocellulose chromatography. Form I constituted approximately 85% while form II was approximately 15% of the total activity; no interconversion between the forms was observed. The major form was purified as a basic protein with an isoelectric point of 10.3. This enzyme consists of a single polypeptide with an apparent Mr of 24,000 as determined by recovering glycosylase activity from a sodium dodecyl sulfate-polyacrylamide gel. A native Mr of 29,000 was determined by glycerol gradient sedimentation. The purified enzyme had no detectable exonuclease, apurinic/apyrimidinic endonuclease, DNA polymerase, or hydroxymethyluracil-DNA glycosylase activity. A 2-fold preference for single-stranded uracil-DNA over a duplex substrate was observed. The apparent Km for uracil residues in DNA was 1.1 microM, and the turnover number is about 1000 uracil residues released per minute. Both free uracil and apyrimidinic sites inhibited glycosylase activity with Ki values of approximately 600 microM and 1.2 microM, respectively. Other uracil analogues including 5-(hydroxymethyl)uracil, 5-fluorouracil, 5-aminouracil, 6-azauracil, and 2-thiouracil or analogues of apyrimidinic sites such as deoxyribose and deoxyribose 5'-phosphate did not inhibit activity. Both form I and form II had virtually identical kinetic properties, and the catalytic fingerprints (specificity for uracil residues located in a defined nucleotide sequence) obtained on a 152-nucleotide restriction fragment of M13mp2 uracil-DNA were almost identical. These properties differentiated the mitochondrial enzyme from that of the uracil-DNA glycosylase purified from nuclei of the same source.  相似文献   

14.
Recombination of uracil-containing lambda bacteriophages.   总被引:3,自引:1,他引:2       下载免费PDF全文
Controlled incorporation of uracil into the deoxyribonucleic acid (DNA) of lambda bacteriophages was achieved by growth on dut ung thy mutants of Escherichia coli. The frequency of substitution of uracil for thymine, estimated by alkaline sucrose sedimentation of phage DNA treated in vitro with uracil DNA glycosylase, ranged from 0.17 to 1.9%. The corresponding ratio between the plating efficiencies on wild-type (Ung+) and glycosylase-deficient (Ung-) bacteria ranged from 0.70 to 0.05. If a single-hit dependence of plating efficiency on uracil content is assumed, the probability that any given uracil residue is lethal is approximately 1% (about one-fifth the probability for a pyrimidine dimer). The effect of uracil on recombination was studied in experiments with lambda tandem duplication phages (ethylenediaminetetraacetic acid [EDTA] sensitive), which are converted to single-copy phages (EDTA resistant) by general recombination. For repressed infections (of homoimmune lysogens), recombination was measured by a two-stage assay (DNA extraction, transfection of spheroplasts, and EDTA treatment). The frequencies observed for uracil-containing phages (2 to 4%) were 5 to 10 times higher than control values. However, comparisons with ultraviolet irradiated phages indicated that uracil residues promoted recombination less than 1/100 as efficiently as ultraviolet-induced lesions. Recombination of uracil-containing phages during repressed infections was negligible in recA and partially reduced in recB bacteria. Recombination was very low in ung cells, suggesting that excision repair was responsible for the stimulation. Interestingly, uracil-stimulated recombination was elevated about twofold in xth bacteria.  相似文献   

15.
Rauscher murine leukemia virus was produced in roller-bottle cultures of chronically infected JLS-V9 cells. Virus from this culture fluid was concentrated and purified by two semi-isopycnic bandings in sucrose gradients. Virus material obtained from young, nonconfluent cultures (early-harvest virus) yielded products characteristically containing endogenous ribonucleic acid-dependent deoxyribonucleic acid polymerase with high specific activity (400 to 1,000 pmol of [3H]thymidine 5'-triphosphate incorporated per milligram of protein per hour). Fluids obtained from older confluent cultures (late-harvest virus) yielded products with endogenous ribonucleic acid-dependent deoxyribonucleic acid polymerase with little or no specific activity (200 pmol or less of [3H]thymidine 5'-triphosphate incorporated per milligram of protein per hour), but with higher virus particle counts and greater amounts of protein and gs antigen than the early-harvest products.  相似文献   

16.
Rauscher murine leukemia virus was produced in roller-bottle cultures of chronically infected JLS-V9 cells. Virus from this culture fluid was concentrated and purified by two semi-isopycnic bandings in sucrose gradients. Virus material obtained from young, nonconfluent cultures (early-harvest virus) yielded products characteristically containing endogenous ribonucleic acid-dependent deoxyribonucleic acid polymerase with high specific activity (400 to 1,000 pmol of [3H]thymidine 5'-triphosphate incorporated per milligram of protein per hour). Fluids obtained from older confluent cultures (late-harvest virus) yielded products with endogenous ribonucleic acid-dependent deoxyribonucleic acid polymerase with little or no specific activity (200 pmol or less of [3H]thymidine 5'-triphosphate incorporated per milligram of protein per hour), but with higher virus particle counts and greater amounts of protein and gs antigen than the early-harvest products.  相似文献   

17.
Growth of a strain of Bacillus subtilis that requires uracil, thymine, adenine, and tryptophan in the presence of 5-fluorouracil (FU) results in the synthesis of ribonucleic acid (RNA) and ribosomes in which 55 to 65% of the RNA uracil has been replaced by the fluorine derivative. Examination of analogue-containing ribosomes by sucrose density gradient centrifugation and thermal denaturation studies suggests that, as far as the size, shape, and packing structure are concerned, extensive FU substitution has little or no effect. FU appears to replace uracil in RNA without selectivity for one RNA class over another, as determined by methylated albumin-kieselguhr column chromatography and sucrose density gradient centrifugation. The total amino acid content of the cells is markedly affected by growth in the presence of FU. The possibility of an FU effect on genetic translation is discussed.  相似文献   

18.
Graham, A. F. (The Wistar Institute of Anatomy and Biology, Philadelphia, Pa.), and Clare Kirk. Effect of 5-fluorouracil on the growth of bacteriophage R17. J. Bacteriol. 90:928-935. 1965.-When added to Escherichia coli within 2 min after phage R17, 5-fluorouracil (FU), at a concentration of 10(-4)m, completely inhibited the synthesis of infectious ribonucleic acid (RNA) and phage. If the addition of FU was made later than 5 min after infection, infectious RNA synthesis was blocked but infectious phage was still formed; the infectious RNA made before the addition of FU continued to be incorporated into mature phage. These properties of the inhibitor were used to determine the kinetics of phage RNA synthesis and the size of the phage precursor RNA pool. At a concentration of 2.2 x 10(-5)m FU, the yield of phage was reduced to 15% of that in an uninhibited control, 28% of the phage RNA uracil was replaced with FU, and the specific infectivity of the phage was unaltered.  相似文献   

19.
Kinetic parameters for uracil DNA glycosylase (E. coli)-catalysed excision of uracil from DNA oligomers containing dUMP in different structural contexts were determined. Our results show that single-stranded oligonucleotides (unstructured) are used as somewhat better substrates than the double-stranded oligonucleotides. This is mainly because of the favourable Vmax value of the enzyme for single-stranded substrates. More interestingly, however, we found that uracil release from loop regions of DNA hairpins is extremely inefficient. The poor efficiency with which uracil is excised from loop regions is a result of both increased Km and lowered Vmax values. This observation may have significant implications in uracil DNA glycosylase-directed repair of DNA segments that can be extruded as hairpins. In addition, these studies are useful in designing oligonucleotides for various applications in DNA research where the use of uracil DNA glycosylase is sought.  相似文献   

20.
Ben-Hamida, Fakher (Washington University School of Medicine, St. Louis, Mo.), and David Schlessinger. Stability of beta-galactosidase messenger ribonucleic acid in Escherichia coli. J. Bacteriol. 90:1611-1616. 1965.-Synthesis of beta-galactosidase stops within several minutes when preinduced, permeaseless cultures are diluted into medium containing 40 mug/ml of 5-fluorouracil (5-FU) but no inducer. However, if inducer (isopropylthiogalactoside) is left in the medium, enzyme formation in the presence of 5-FU continues for at least 11 min. Thus, inducer may increase the differential metabolic stability of the corresponding messenger ribonucleic acid (RNA; defined as the capacity to produce measurable enzyme) in inducible strains. However, such an interpretation requires that 5-FU rapidly arrest the further synthesis of messenger RNA competent to form active enzyme. C(14)-5-FU, like uracil, does appear to enter cells without measurable lag, saturating the pool of uracil nucleotides, and thereby the messenger RNA being formed, within several minutes. That 5-FU acts very quickly is also supported by the similar continuation of enzyme synthesis in the presence of inducer and antibiotics (actinomycin D and proflavine) which shut off all RNA synthesis, as well as by the response to 5-FU of enzyme synthesis in various constitutive mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号