首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a model of the origin of genetic code organization incorporating the biosynthetic relationships between amino acids and their physicochemical properties. We study the behavior of the genetic code in the set of codes subject both to biosynthetic constraints and to the constraint that the biosynthetic classes of amino acids must occupy only their own codon domain, as observed in the genetic code. Therefore, this set contains the smallest number of elements ever analyzed in similar studies. Under these conditions and if, as predicted by physicochemical postulates, the amino acid properties played a fundamental role in genetic code organization, it can be expected that the code must display an extremely high level of optimization. This prediction is not supported by our analysis, which indicates, for instance, a minimization percentage of only 80%. These observations can therefore be more easily explained by the coevolution theory of genetic code origin, which postulates a role that is important but not fundamental for the amino acid properties in the structuring of the code. We have also investigated the shape of the optimization landscape that might have arisen during genetic code origin. Here, too, the results seem to favor the coevolution theory because, for instance, the fact that only a few amino acid exchanges would have been sufficient to transform the genetic code (which is not a local minimum) into a much better optimized code, and that such exchanges did not actually take place, seems to suggest that, for instance, the reduction of translation errors was not the main adaptive theme structuring the genetic code.  相似文献   

2.
Two forces are in general, hypothesized to have influenced the origin of the organization of the genetic code: the physicochemical properties of amino acids and their biosynthetic relationships. In view of this, we have considered a model incorporating these two forces. In particular, we have studied the optimization level of the physicochemical properties of amino acids in the set of amino acid permutation codes that respects the biosynthetic relationships between amino acids. Where the properties of amino acids are represented by polarity and molecular volume we obtain indetermination percentages in the organization of the genetic code of approximately 40%. This indicates that the contingent factor played a significant role in structuring the genetic code. Furthermore, this result is in agreement with the genetic code coevolution hypothesis, which attributes a merely ancillary role to the properties of amino acids while it suggests that it was their biosynthetic relationships that organized the code. Furthermore, this result does not favor the stereochemical models proposed to explain the origin of the genetic code. On the other hand, where the properties of amino acids are represented by polarity alone, we obtain an indetermination percentage of at least 21.5%. This might suggest that the polarity distances played an important role and would therefore provide evidence in favor of the physicochemical hypothesis of genetic code origin. Although, overall, the analysis might have given stronger support to the latter hypothesis, this did not actually occur. The results are therefore discussed in the context of the different theories proposed to explain the origin of the genetic code. Received: 10 September 1996 / Accepted: 3 March 1997  相似文献   

3.
Two forces are generally hypothesised as being responsible for conditioning the origin of the organization of the genetic code: the physicochemical properties of amino acids and their biosynthetic relationships (relationships between precursor and product amino acids). If we assume that the biosynthetic relationships between amino acids were fundamental in defining the genetic code, then it is reasonable to expect that the distribution of physicochemical properties among the amino acids in precursor-product relationships cannot be random but must, rather, be affected by some selective constraints imposed by the structure of primitive proteins. Analysis shows that measurements representing the size of amino acids, e.g. bulkiness, are specifically associated to the pairs of amino acids in precursor-product relationships. However, the size of amino acids cannot have been selected per se but, rather, because it reflects the-sheets of proteins which are, therefore, identified as the main adaptive theme promoting the origin of genetic code organization. Whereas there are no traces of the-helix in the genetic code table.The above considerations make it necessary to re-examine the relationship linking the hydrophilicity of the dinucleoside monophosphates of anticodons and the polarity and bulkiness of amino acids. It can be concluded that this relationship seems to be meaningful only between the hydrophilicity of anticodons and the polarity of amino acids. The latter relationship is supposed to have been operative on hairpin structures, ancestors of the tRNA molecule. Moreover, it is on these very structures that the biosynthetic links between precursor and product amino acids might have been achieved, and the interaction between the hydrophilicity of anticodons and the polarity of amino acids might have had a role in the concession of codons (anticodons) from precursors to products.  相似文献   

4.
Goodarzi H  Nejad HA  Torabi N 《Bio Systems》2004,77(1-3):163-173
The existence of nonrandom patterns in codon assignments is supported by many statistical and biochemical studies. The canonical genetic code is known to be highly efficient in minimizing the effects of mistranslation errors and point mutations. For example, it is known that when an error induces the conversion of an amino acid to another, the biochemical properties of the resulting amino acid are usually very similar to that of the original. Prior studies include many attempts at quantitative estimation of the fraction of randomly generated codes which, based upon load minimization, score higher than the canonical genetic code. In this study, we took into consideration both the relative frequencies of amino acids and nonsense mistranslations, factors which had been previously ignored. Incorporation of these parameters, resulted in a fitness function (phi) which rendered the canonical genetic code to be highly optimized with respect to load minimization. Considering termination codons, we applied a biosynthetic version of the coevolution theory, however, with low significance. We employed a revised cost for the precursor-product pairs of amino acids and showed that the significance of this approach depends on the cost measure matrix used by the researcher. Thus, we have compared the two prominent matrices, point accepted mutations 74-100 (PAM(74-100)) and mutation matrix in our study.  相似文献   

5.

Background  

The coevolution theory of the origin of the genetic code suggests that the genetic code is an imprint of the biosynthetic relationships between amino acids. However, this theory does not seem to attribute a role to the biosynthetic relationships between the earliest amino acids that evolved along the pathways of energetic metabolism. As a result, the coevolution theory is unable to clearly define the very earliest phases of genetic code origin. In order to remove this difficulty, I here suggest an extension of the coevolution theory that attributes a crucial role to the first amino acids that evolved along these biosynthetic pathways and to their biosynthetic relationships, even when defined by the non-amino acid molecules that are their precursors.  相似文献   

6.
A progene hypothesis has been proposed earlier to explain the mechanism of origin of the self-reproducing genetic system. Progenes (precursors of the genetic system) are mixed anhydrides of an amino acid and deoxyribotrinucleotide at the 3'-gamma-terminal phosphate (NpNpNppp-AA); they are produced from dinucleotides (NpNp) and 3'-gamma-aminoacylnucleotidylates (Nppp-AA) as a result of specific interaction between amino acid and dinucleotide. The postulated mechanism of progene formation accounts for the selection of substances, including chirality, the origin of the genetic code as well as for the mechanisms of formation, self-reproduction and evolution of the simpliest genetic system ("gene--polypeptide"). A stereochemical analysis of the progene formation mechanism has allowed us to support the main statements of the hypothesis that relate to the origin of the genetic code and to selection of substances. Atomic groups that could be responsible for the specificity of interaction between dinucleotides and amino acids in progene formation have been revealed. Stereochemical evidence for the physicochemical basis of the origin of the existing genetic code have been produced: 1) a special role of the second nucleotide in the codon is demonstrated in amino acid coding by the progene hypothesis principle; 2) an advantage of T against U in such coding is demonstrated; 3) for 16 amino acids out of 20 an agreement has been obtained between the optimal dinucleotide as revealed by the stereochemical analysis and the codon dinucleotides; 4) an explanation for the third nucleotide selection mechanism is offered. A restoration of the prebiotic code, based on these results, has indicated that the code contains 32 codons, is statistical and group-wise. It encodes 7 groups of isofunctional amino acids: 3 overlapping groups of non-polar amino acids 1) medium-size hydrophobic amino acids (chiefly Val, n-Val and a-But), 2) small and medium-size non-polar amino acids (chiefly Ala Val, n-Val a-But and Gly), 3) small non-polar amino acids (Gly, Ala, a-But) and 4 groups of polar amino acids--1) hydroxy--+dicarbonic (Asp, Glu, Ser and Thr), 2) dicarbonic (Asp and Glu), 3) hydroxy (Ser and Thr) and 4) basic (Arg and Lys). The code includes about 20 amino acids among which are 15-17 canonical and a few common non-canonical. The prebiotic code explains many properties of the existing genetic code and is capable of evolving into the latter by way of a gradual replacement of the physicochemical coding mechanism by the enzymatic coding mechanism.  相似文献   

7.
A paper (Amirnovin R, J Mol Evol 44:473–476, 1997) seems to undermine the validity of the coevolution theory of genetic code origin by shedding doubt on the connection between the biosynthetic relationships between amino acids and the organization of the genetic code, at a time when the literature on the topic takes this for granted. However, as a few papers cite this paper as evidence against the coevolution theory, and to cast aside all doubt on the subject, we have decided to reanalyze the statistical bases on which this theory is founded. We come to the following conclusions: (1) the methods used in the above referred paper contain certain mistakes, and (2) the statistical foundations on which the coevolution theory is based are extremely robust. We have done this by critically appraising Amirnovin's paper and suggesting an alternative method based on the generation of random codes which, along with the method reported in the literature, allows us to evaluate the significance, in the genetic code, of different sets of amino acid pairs in biosynthetic relationships. In particular, by using this method and after building up a certain set of amino acid pairs reflecting the expectations of the coevolution theory, we show that the presence of this set in the genetic code would be obtained, purely by chance, with a probability of 6 × 10−5. This observation seems to provide particularly strong support to the coevolution theory. Received: 28 June 1999 / Accepted: 23 October 1999  相似文献   

8.
A computer program was used to test Wong's coevolution theory of the genetic code. The codon correlations between the codons of biosynthetically related amino acids in the universal genetic code and in randomly generated genetic codes were compared. It was determined that many codon correlations are also present within random genetic codes and that among the random codes there are always several which have many more correlations than that found in the universal code. Although the number of correlations depends on the choice of biosynthetically related amino acids, the probability of choosing a random genetic code with the same or greater number of codon correlations as the universal genetic code was found to vary from 0.1% to 34% (with respect to a fairly complete listing of related amino acids). Thus, Wong's theory that the genetic code arose by coevolution with the biosynthetic pathways of amino acids, based on codon correlations between biosynthetically related amino acids, is statistical in nature. Received: 8 August 1996 / Accepted: 26 December 1996  相似文献   

9.
Directed protein evolution is the most versatile method for studying protein structure-function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2-7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard.  相似文献   

10.
Directed protein evolution is the most versatile method for studying protein structure–function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2–7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard.  相似文献   

11.
In this paper the partition metric is used to compare binary trees deriving from (i) the study of the evolutionary relationships between aminoacyl-tRNA synthetases, (ii) the physicochemical properties of amino acids and (iii) the biosynthetic relationships between amino acids. If the tree defining the evolutionary relationships between aminoacyl-tRNA synthetases is assumed to be a manifestation of the mechanism that originated the organization of the genetic code, then the results appear to indicate the following: the hypothesis that regards the genetic code as a map of the biosynthetic relationships between amino acids seems to explain the organization of the genetic code, at least as plausibly as the hypotheses that consider the physicochemical properties of amino acids as the main adaptive theme that lead to the structuring of the code.  相似文献   

12.
Chemical language of the genetic code is suggested in which elementary information code units are presented by functional groups of amino acids and nucleotides. Using this language, the existence of correspondence and conformity of chemical parameters of amino acids and of central nucleotides of their anticodons was demonstrated. These findings confirm the idea that the genetic code is determined by chemical properties of amino acids and nucleotides and that this determination is the result of direct specific interactions between amino acids and nucleotide triplets at the stage of the origin of the code. The data obtained reveal primary role of anticodon triplets in the origin of the code. Key role of the central nucleotide in triplets for amino acid coding is confirmed.  相似文献   

13.
The high conservation of the genetic code and its fundamental role in genome decoding suggest that its evolution is highly restricted or even frozen. However, various prokaryotic and eukaryotic genetic code alterations, several alternative tRNA-dependent amino acid biosynthesis pathways, regulation of tRNA decoding by diverse nucleoside modifications and recent in vivo incorporation of non-natural amino acids into prokaryotic and eukaryotic proteins, show that the code evolves and is surprisingly flexible. The cellular mechanisms and the proteome buffering capacity that support such evolutionary processes remain unclear. Here we explore the hypothesis that codon misreading and reassignment played fundamental roles in the development of the genetic code and we show how a fungal codon reassignment is enlightening its evolution.  相似文献   

14.
15.
A new method for looking at relationships between nucleotide sequences has been used to analyze divergence both within and between the families of isoaccepting tRNA sets. A dendrogram of the relationships between 21 tRNA sets with different amino acid specificities is presented as the result of the analysis. Methionine initiator tRNAs are included as a separate set. The dendrogram has been interpreted with respect to the final stage of the evolutionary pathway with the development of highly specific tRNAs from ambiguous molecular adaptors. The location of the sets on the dendrogram was therefore analyzed in relation to hypotheses on the origin of the genetic code: the coevolution theory, the physicochemical hypothesis, and the hypothesis of ambiguity reduction of the genetic code. Pairs of 16 sets of isoacceptor tRNAs, whose amino acids are in biosynthetic relationships, occupied contiguous positions on the dendrogram, thus supporting the coevolution theory of the genetic code. Received: 4 May 1998 / Accepted: 11 July 1998  相似文献   

16.
Summary It is apparent in the genetic code that amino acids of similar chemical nature have similar codons. I show how through successive codon captures (multiple rounds of Osawa-Jukes type reassignments), complete codon swappings in an unfavorable genetic code are evolutionarily feasible. This mechanisms could have complemented the ambiguity reduction and the vocabulary extension processes of codon-amino acid assignments. Evolution of wobble rules is implied. Transfer RNA molecules and synthetases may still carry memories of it.  相似文献   

17.
Any statement on the optimality of the existing code ought to imply that this code is ideal for conserving a certain hierarchy of properties while implying that other codes may have been better suited for conservation of other hierarchies of properties. We have evaluated the capability of mutations in the genetic code to convert one amino acid into another in relation to the consequent changes in physical properties of those amino acids. A rather surprising result emerging from this analysis is that the genetic code conserves long-range interactions among amino acids and not their short-range stereochemical attributes. This observation, based directly on the genetic code itself and the physical properties of the 20 amino acids, lends credibility to the idea that the genetic code has not originated by a frozen accident (the null hypothesis rejected by these studies) nor are stereochemical attributes particularly useful in our understanding of what makes the genetic code ‘tick’. While the argument that replacement of, say, an aspartate by a glutamate is less damaging than replacement by arginine makes sense, in order to subject such statements to rigorous statistical tests it is essential to define what constitutes a random sample for the genetic code. The present investigation describes one possible specification. In addition to obvious statistical considerations of testing hypotheses, this procedure points to the more exciting notion that alternative codes may have existed.  相似文献   

18.
Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular—and contrary to the predictions of the mutation-drift hypothesis—the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.  相似文献   

19.
Studies on the origin of the genetic code compare measures of the degree of error minimization of the standard code with measures produced by random variant codes but do not take into account codon usage, which was probably highly biased during the origin of the code. Codon usage bias could play an important role in the minimization of the chemical distances between amino acids because the importance of errors depends also on the frequency of the different codons. Here I show that when codon usage is taken into account, the degree of error minimization of the standard code may be dramatically reduced, and shifting to alternative codes often increases the degree of error minimization. This is especially true with a high CG content, which was probably the case during the origin of the code. I also show that the frequency of codes that perform better than the standard code, in terms of relative efficiency, is much higher in the neighborhood of the standard code itself, even when not considering codon usage bias; therefore alternative codes that differ only slightly from the standard code are more likely to evolve than some previous analyses suggested. My conclusions are that the standard genetic code is far from being an optimum with respect to error minimization and must have arisen for reasons other than error minimization.[Reviewing Editor: Martin Kreitman]  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号