首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase D (PKD)/protein kinase Cmicro (PKCmicro, a serine/threonine protein kinase with distinct structural and enzymological properties, is rapidly activated in intact cells via PKC. The amino-terminal region of PKD contains a cysteine-rich domain (CRD) that directly binds phorbol esters with a high affinity. Here, we show that treatment of transfected RBL 2H3 cells with phorbol 12,13-dibutyrate (PDB) induces a striking CRD-dependent translocation of PKD from the cytosol to the plasma membrane, as shown by real time visualization of a functional green fluorescent protein (GFP)-PKD fusion protein. A single amino acid substitution in the second cysteine-rich motif of PKD (P287G) prevented PDB-induced membrane translocation but did not affect PKD activation. Our results indicate that PKD translocation and activation are distinct processes that operate in parallel to regulate the activity and localization of this enzyme in intact cells.  相似文献   

2.
Protein kinase D (PKD) isoforms are effectors in signaling pathways controlled by diacylglycerol. PKDs contain conserved diacylglycerol binding (C1a, C1b), pleckstrin homology (PH), and Ser/Thr kinase domains. However, the properties of conserved domains may vary within the context of distinct PKD polypeptides. Such functional/structural malleability (plasticity) was explored by studying Caenorhabditis elegans D kinase family-1 (DKF-1), a PKD that governs locomotion in vivo. Phorbol ester binding with C1b alone activates classical PKDs by relieving C1-mediated inhibition. In contrast, C1a avidly ligated phorbol 12-myristate 13-acetate (PMA) and anchored DKF-1 at the plasma membrane. C1b bound PMA (moderate affinity) and cooperated with C1a in targeting DKF-1 to membranes. Mutations at a "Pro(11)" position in C1 domains were inactivating; kinase activity was minimal at PMA concentrations that stimulated wild type DKF-1 approximately 10-fold. DKF-1 mutants exhibited unchanged, maximum kinase activity after cells were incubated with high PMA concentrations. Titration in situ revealed that translocation and activation of wild type and mutant DKF-1 were tightly and quantitatively linked at all PMA concentrations. Thus, C1 domains positively regulated phosphotransferase activity by docking DKF-1 with pools of activating lipid. A PH domain inhibits kinase activity in classical PKDs. The DKF-1 PH module neither inhibited catalytic activity nor bound phosphoinositides. Consequently, the PH module is an obligatory, positive regulator of DKF-1 activity that is compromised by mutation of Lys(298) or Trp(396). Phosphorylation of Thr(588) switched on DKF-1 kinase activity. Persistent phosphorylation of Thr(588) (activation loop) promoted ubiquitinylation and proteasome-mediated degradation of DKF-1. Each DKF-1 domain displayed novel properties indicative of functional malleability (plasticity).  相似文献   

3.
We visualized the translocation of myristoylated alanine-rich protein kinase C substrate (MARCKS) in living Chinese hamster ovary-K1 cells using MARCKS tagged to green fluorescent protein (MARCKS-GFP). MARCKS-GFP was rapidly translocated from the plasma membrane to the cytoplasm after the treatment with phorbol ester, which translocates protein kinase C (PKC) to the plasma membrane. In contrast, PKC activation by hydrogen peroxide, which was not accompanied by PKC translocation, did not alter the intracellular localization of MARCKS-GFP. Non-myristoylated mutant of MARCKS-GFP was distributed throughout the cytoplasm, including the nucleoplasm, and was not translocated by phorbol ester or by hydrogen peroxide. Phosphorylation of wild-type MARCKS-GFP was observed in cells treated with phorbol ester but not with hydrogen peroxide, whereas non-myristoylated mutant of MARCKS-GFP was phosphorylated in cells treated with hydrogen peroxide but not with phorbol ester. Phosphorylation of both MARCKS-GFPs reduced the amount of F-actin. These findings revealed that PKC targeting to the plasma membrane is required for the phosphorylation of membrane-associated MARCKS and that a mutant MARCKS existing in the cytoplasm can be phosphorylated by PKC activated in the cytoplasm without translocation but not by PKC targeted to the membrane.  相似文献   

4.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

5.
To elucidate the involvement of protein kinase C (PKC) isoforms in insulin-induced and phorbol ester-induced glucose transport, we expressed several PKC isoforms, conventional PKC-alpha, novel PKC-delta, and atypical PKC isoforms of PKC-lambda and PKC-zeta, and their mutants in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Endogenous expression and the activities of PKC-alpha and PKC-lambda/zeta, but not of PKC-delta, were detected in 3T3-L1 adipocytes. Overexpression of each wild-type PKC isoform induced a large amount of PKC activity in 3T3-L1 adipocytes. Phorbol 12-myristrate 13-acetate (PMA) activated PKC-alpha and exogenous PKC-delta but not atypical PKC-lambda/zeta. Insulin also activated the overexpressed PKC-delta but not PKC-alpha. Expression of the wild-type PKC-alpha or PKC-delta resulted in significant increases in glucose transport activity in the basal and PMA-stimulated states. Dominant-negative PKC-alpha expression, which inhibited the PMA activation of PKC-alpha, decreased in PMA-stimulated glucose transport. Glucose transport activity in the insulin-stimulated state was increased by the expression of PKC-delta but not of PKC-alpha. These findings demonstrate that both conventional and novel PKC isoforms are involved in PMA-stimulated glucose transport and that other novel PKC isoforms could participate in PMA-stimulated and insulin-stimulated glucose transport. Atypical PKC-lambda/zeta was not significantly activated by insulin, and expression of the wild-type, constitutively active, and dominant-negative mutants of atypical PKC did not affect either basal or insulin-stimulated glucose transport. Thus atypical PKC enzymes do not play a major role in insulin-stimulated glucose transport in 3T3-L1 adipocytes.  相似文献   

6.
Protein kinase C (PKC) isozymes, a family of serine-threonine kinases, are important regulators of cell proliferation and malignant transformation. Phorbol esters, the prototype PKC activators, cause PKC translocation to the plasma membrane in prostate cancer cells, and trigger an apoptotic response. Studies in recent years have determined that each member of the PKC family exerts different effects on apoptotic or survival pathways. PKCdelta, one of the novel PKCs, is a key player of the apoptotic response via the activation of the p38 MAPK pathway. Studies using RNAi revealed that depletion of PKCdelta totally abolishes the apoptotic effect of the phorbol ester PMA. Activation of the classical PKCalpha promotes the dephosphorylation and inactivation of the survival kinase Akt. Studies have assigned a pro-survival role to PKCepsilon, but the function of this PKC isozyme remains controversial. Recently, it has been determined that the PKC apoptotic effect in androgen-dependent prostate cancer cells is mediated by the autocrine secretion of death factors. PKCdelta stimulates the release of TNFalpha from the plasma membrane, and blockade of TNFalpha secretion or TNFalpha receptors abrogates the apoptotic response of PMA. Molecular analysis indicates the requirement of the extrinsic apoptotic cascade via the activation of death receptors and caspase-8. Dissecting the pathways downstream of PKC isozymes represents a major challenge to understanding the molecular basis of phorbol ester-induced apoptosis.  相似文献   

7.
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme whose activity is inhibited in settings of insulin resistance. Exposure to a high glucose concentration has recently been shown to increase phosphorylation of AMPK at Ser485/491 of its α1/α2 subunit; however, the mechanism by which it does so is not known. Diacylglycerol (DAG), which is also increased in muscle exposed to high glucose, activates a number of signaling molecules including protein kinase (PK)C and PKD1. We sought to determine whether PKC or PKD1 is involved in inhibition of AMPK by causing Ser485/491 phosphorylation in skeletal muscle cells. C2C12 myotubes were treated with the PKC/D1 activator phorbol 12-myristate 13-acetate (PMA), which acts as a DAG mimetic. This caused dose- and time-dependent increases in AMPK Ser485/491 phosphorylation, which was associated with a ∼60% decrease in AMPKα2 activity. Expression of a phosphodefective AMPKα2 mutant (S491A) prevented the PMA-induced reduction in AMPK activity. Serine phosphorylation and inhibition of AMPK activity were partially prevented by the broad PKC inhibitor Gö6983 and fully prevented by the specific PKD1 inhibitor CRT0066101. Genetic knockdown of PKD1 also prevented Ser485/491 phosphorylation of AMPK. Inhibition of previously identified kinases that phosphorylate AMPK at this site (Akt, S6K, and ERK) did not prevent these events. PMA treatment also caused impairments in insulin-signaling through Akt, which were prevented by PKD1 inhibition. Finally, recombinant PKD1 phosphorylated AMPKα2 at Ser491 in cell-free conditions. These results identify PKD1 as a novel upstream kinase of AMPKα2 Ser491 that plays a negative role in insulin signaling in muscle cells.  相似文献   

8.
Cysteine-rich domains (Cys-domains) are ~50–amino acid–long protein domains that complex two zinc ions and include a consensus sequence with six cysteine and two histidine residues. In vitro studies have shown that Cys-domains from several protein kinase C (PKC) isoforms and a number of other signaling proteins bind lipid membranes in the presence of diacylglycerol or phorbol ester. Here we examine the second messenger functions of diacylglycerol in living cells by monitoring the membrane translocation of the green fluorescent protein (GFP)-tagged first Cys-domain of PKC-γ (Cys1–GFP). Strikingly, stimulation of G-protein or tyrosine kinase–coupled receptors induced a transient translocation of cytosolic Cys1–GFP to the plasma membrane. The plasma membrane translocation was mimicked by addition of the diacylglycerol analogue DiC8 or the phorbol ester, phorbol myristate acetate (PMA). Photobleaching recovery studies showed that PMA nearly immobilized Cys1–GFP in the membrane, whereas DiC8 left Cys1–GFP diffusible within the membrane. Addition of a smaller and more hydrophilic phorbol ester, phorbol dibuterate (PDBu), localized Cys1–GFP preferentially to the plasma and nuclear membranes. This selective membrane localization was lost in the presence of arachidonic acid. GFP-tagged Cys1Cys2-domains and full-length PKC-γ also translocated from the cytosol to the plasma membrane in response to receptor or PMA stimuli, whereas significant plasma membrane translocation of Cys2–GFP was only observed in response to PMA addition. These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester–mediated translocation of proteins to selective lipid membranes.  相似文献   

9.
Protein kinase D1 (PKD1) is involved in cellular processes including protein secretion, proliferation and apoptosis. Studies suggest PKD1 is activated by various stimulants including gastrointestinal (GI) hormones/neurotransmitters and growth factors in a protein kinase C (PKC)-dependent pathway. However, little is known about the mechanisms of PKD1 activation in physiologic GI tissues. We explored PKD1 activation by GI hormones/neurotransmitters and growth factors and the mediators involved in rat pancreatic acini. Only hormones/neurotransmitters activating phospholipase C caused PKD1 phosphorylation (S916, S744/748). CCK activated PKD1 and caused a time- and dose-dependent increase in serine phosphorylation by activation of high- and low-affinity CCK(A) receptor states. Inhibition of CCK-stimulated increases in phospholipase C, PKC activity or intracellular calcium decreased PKD1 S916 phosphorylation by 56%, 62% and 96%, respectively. PKC inhibitors GF109203X/Go6976/Go6983/PKC-zeta pseudosubstrate caused a 62/43/49/0% inhibition of PKD1 S916 phosphorylation and an 87/13/82/0% inhibition of PKD1 S744/748 phosphorylation. Expression of dominant negative PKC-delta, but not PKC-epsilon, or treatment with PKC-delta translocation inhibitor caused marked inhibition of PKD phosphorylation. Inhibition of Src/PI3K/MAPK/tyrosine phosphorylation had no effect. In unstimulated cells, PKD1 was mostly located in the cytoplasm. CCK stimulated translocation of total and phosphorylated PKD1 to the membrane. These results demonstrate that CCK(A) receptor activation leads to PKD activation by signaling through PKC-dependent and PKC-independent pathways.  相似文献   

10.
Sphingosine-1-phosphate (S1P) is a highly bioactive sphingolipid involved in diverse biological processes leading to changes in cell growth, differentiation, motility, and survival. S1P generation is regulated via sphingosine kinase (SK), and many of its effects are mediated through extracelluar action on G-protein-coupled receptors. In this study, we have investigated the mechanisms regulating SK, where this occurs in the cell, and whether this leads to release of S1P extracellularly. The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), induced early activation of SK in HEK 293 cells, and this activation was more specific to the membrane-associated SK. Therefore, we next investigated whether PMA induced translocation of SK to the plasma membrane. PMA induced translocation of both endogenous and green fluorescent protein (GFP)-tagged human SK1 (hSK1) to the plasma membrane. PMA also induced phosphorylation of GFP-hSK1. The PMA-induced translocation was abrogated by preincubation with known PKC inhibitors (bisindoylmaleimide and calphostin-c) as well as by the indirect inhibitor of PKC, C(6)-ceramide, supporting a role for PKC in mediating translocation of SK to the plasma membrane. SK activity was not necessary for translocation, because a dominant negative G82D mutation also translocated in response to PMA. Importantly, PKC regulation of SK was accompanied by a 4-fold increase in S1P in the media. These results demonstrate a novel mechanism by which PKC regulates SK and increases secretion of S1P, allowing for autocrine/paracrine signaling.  相似文献   

11.
Protein kinase D localizes in the Golgi and regulates protein transport from the Golgi to the plasma membrane. In the present study, we found that PKD3, a novel member of the PKD family, and its fluorescent protein fusions localized in the Golgi and in the vesicular structures that are in part marked by endosome markers. Fluorescent recovery after photobleaching (FRAP) showed that the PKD3-associated vesicular structures were constantly forming and dissolving, reflecting active subcellular structures. FRAP on plasma membrane-located PKD3 indicated a slower recovery of PKD3 fluorescent signal compared to those of PKC isoforms, implying a different targeting mechanism at the plasma membrane. VAMP2, the vesicle-localized v-SNARE, was later identified as a novel binding partner of PKD3 through yeast two-hybrid screening. PKD3 directly interacted with VAMP2 in vitro and in vivo, and colocalized in part with VAMP2 vesicles in cells. PKD3 did not phosphorylate VAMP-GFP and the purified GST-VAMP2 protein in in vitro phosphorylation assays. Rather, PKD3 was found to promote the recruitment of VAMP2 vesicles to the plasma membrane in response to PMA, while the kinase dead PKD3 abolished this effect. Thus, the kinase activity of PKD3 was required for PMA-induced plasma membrane trafficking of VAMP2. In summary, our findings suggest that PKD3 localizes to vesicular structures that are part of the endocytic compartment. The vesicular distribution may be attributed in part to the direct interaction between PKD3 and vesicle-associated membrane protein VAMP2, through which PKD3 may regulate VAMP2 vesicle trafficking by facilitating its recruitment to the target membrane.  相似文献   

12.
Tachykinins, acting through NK(3) receptors (NK(3)R), contribute to excitatory transmission to intrinsic primary afferent neurons (IPANs) of the small intestine. Although this transmission is dependent on protein kinase C (PKC), its maintenance could depend on protein kinase D (PKD), a downstream target of PKC. Here we show that PKD1/2-immunoreactivity occurred exclusively in IPANs of the guinea pig ileum, demonstrated by double staining with the IPAN marker NeuN. PKCepsilon was also colocalized with PKD1/2 in IPANs. PKCepsilon and PKD1/2 trafficking was studied in enteric neurons within whole mounts of the ileal wall. In untreated preparations, PKCepsilon and PKD1/2 were cytosolic and no signal for activated (phosphorylated) PKD was detected. The NK(3)R agonist senktide evoked a transient translocation of PKCepsilon and PKD1/2 from the cytosol to the plasma membrane and induced PKD1/2 phosphorylation at the plasma membrane. PKCepsilon translocation was maximal at 10 s and returned to the cytosol within 2 min. Phosphorylated-PKD1/2 was detected at the plasma membrane within 15 s and translocated to the cytosol by 2 min, where it remained active up to 30 min after NK(3)R stimulation. PKD1/2 activation was reduced by a PKCepsilon inhibitor and prevented by NK(3)R inhibition. NK(3)R-mediated PKCepsilon and PKD activation was confirmed in HEK293 cells transiently expressing NK(3)R and green fluorescent protein-tagged PKCepsilon, PKD1, PKD2, or PKD3. Senktide caused membrane translocation and activation of kinases within 30 s. After 15 min, phosphorylated PKD had returned to the cytosol. PKD activation was confirmed through Western blotting. Thus stimulation of NK(3)R activates PKCepsilon and PKD in sequence, and sequential activation of these kinases may account for rapid and prolonged modulation of IPAN function.  相似文献   

13.
Protein kinase D (PKD)/protein kinase C (PKC) mu is a serine/threonine protein kinase that can be activated by physiological stimuli like growth factors, antigen-receptor engagement and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires PKC activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular translocation of a green fluorescent protein-tagged PKD was analyzed by real-time visualization in fibroblasts and epithelial cells stimulated with bombesin, a GPCR agonist. We found that bombesin induced a rapidly reversible plasma membrane translocation of green fluorescent protein-tagged PKD, an event that can be divided into two distinct mechanistic steps. The first step, which is exclusively mediated by the cysteine-rich domain in the N terminus of PKD, involved its translocation from the cytosol to the plasma membrane. The second step, i.e. the rapid reverse translocation of PKD from the plasma membrane to the cytosol, required its catalytic domain and surprisingly PKC activity. These findings provide evidence for a novel mechanism by which PKC coordinates the translocation and activation of PKD in response to bombesin-induced GPCR activation.  相似文献   

14.
Enzyme localization often plays a controlling role in determining its activity and specificity. Protein kinase C (PKC) has long been known to translocate in response to physiological stimuli as well as to exogenous ligands such as the phorbol esters. We report here that different phorbol derivatives and related ligands, selected for differences in chemical structure and profile of biological activity, induce distinct patterns of redistribution of PKC delta. Localization of a PKC delta-green fluorescent protein (GFP) fusion construct was monitored in living Chinese hamster ovary cells as a function of ligand, concentration, and time using confocal laser scanning microscopy. delta-PKC-GFP was expressed predominantly in the cytoplasm, with some in the nucleus and perinuclear region. Phorbol 12-myristate 13-acetate (PMA) induced plasma membrane translocation followed by slower nuclear membrane translocation. As the concentration of PMA increased, the proportion of nuclear to plasma membrane localization increased markedly. In contrast to PMA, bryostatin 1, a unique activator of PKC that induces a subset of PMA-mediated responses while antagonizing others, at all doses induced almost exclusively nuclear membrane translocation. Like PMA, the complete tumor promoter 12-deoxyphorbol 13-tetradecanoate induced plasma membrane and slower nuclear membrane translocation, whereas the inhibitor of tumor promotion 12-deoxyphorbol 13-phenylacetate, which differs only in its side chain, induced a distinctive distribution of PKC delta-GFP. Finally, the novel constrained diacylglycerol derivative B8-DL-B8 induced a slow Golgi localization. We speculate that differential control of PKC delta localization may provide an interesting strategy for producing ligands with differential biological consequences.  相似文献   

15.
Recent studies have highlighted the existence of discrete microdomains at the cell surface that are distinct from caveolae. The function of these microdomains remains unknown. However, recent evidence suggests that they may participate in a subset of transmembrane signaling events. In hematopoietic cells, these low density Triton-insoluble (LDTI) microdomains (also called caveolae-related domains) are dramatically enriched in signaling molecules, such as cell surface receptors (CD4 and CD55), Src family tyrosine kinases (Lyn, Lck, Hck, and Fyn), heterotrimeric G proteins, and gangliosides (GM1 and GM3). Human T lymphocytes have become a well established model system for studying the process of phorbol ester-induced down-regulation of CD4. Here, we present evidence that phorbol 12-myristate 13-acetate (PMA)-induced down-regulation of the cell surface pool of CD4 occurs within the LDTI microdomains of T cells. Localization of CD4 in LDTI microdomains was confirmed by immunoelectron microscopy. PMA-induced disruption of the CD4-Lck complex was rapid (within 5 min), and this disruption occurred within LDTI microdomains. Because PMA is an activator of protein kinase C (PKC), we next evaluated the possible roles of different PKC isoforms in this process. Our results indicate that PMA induced the rapid translocation of cytosolic PKCs to LDTI microdomains. We identified PKCalpha as the major isoform involved in this translocation event. Taken together, our results support the hypothesis that LDTI microdomains represent a functionally important plasma membrane compartment in T cells.  相似文献   

16.
We have used S49 mouse lymphoma cells to study phorbol ester effects on growth. Treatment of wild-type (wt) cells with phorbol 12-myristate 13-acetate (PMA) results in growth arrest within 72 hr. We have selected variants that are resistant to PMA-induced growth arrest, based on a selection in the presence of 10 nM PMA. We have characterized one of these variants, termed 21.1, in detail. The 21.1 and wt cells contain similar levels of protein kinase C (PKC) as determined by [3H]phorbol 12,13-dibutyrate ([3H]PDBu) binding. Treatment of both wt and 21.1 cells with PMA results in translocation of PKC to the membrane, suggesting that the coupling between PKC and an immediate biological response is intact. PMA treatment leads to the phosphorylation of many similar proteins in wild-type and 21.1 cells. However, in the 21.1 cells there is a prominent substrate of approximately 70 kilodaltons (kD) which is no longer phosphorylated after PMA treatment. In wild-type cells ornithine decarboxylase (ODC) activity and mRNA levels are decreased within 1 hr of PMA treatment. Likewise, ODC levels are decreased in the 21.1 cells after exposure to PMA even though PMA only slightly modulates the growth of these cells. The 21.1 cells represent a unique line with a dominant phenotype in which ODC expression is uncoupled from the growth state of the cell. These cells may represent a good model system in which to examine the steps involved in phorbol ester growth regulation in S49 cells.  相似文献   

17.
Protein kinase D (PKD) is a novel family of serine/threonine kinases targeted by the second messenger diacylglycerol. It has been implicated in many important cellular processes and pathological conditions. However, further analysis of PKD in these processes is severely hampered by the lack of a PKD-specific inhibitor that can be readily applied to cells and in animal models. We now report the discovery of the first potent and selective cell-active small molecule inhibitor for PKD, benzoxoloazepinolone (CID755673). This inhibitor was identified from the National Institutes of Health small molecule repository library of 196,173 compounds using a human PKD1 (PKCmu)-based fluorescence polarization high throughput screening assay. CID755673 suppressed half of the PKD1 enzyme activity at 182 nm and exhibited selective PKD1 inhibition when compared with AKT, polo-like kinase 1 (PLK1), CDK activating kinase (CAK), CAMKIIalpha, and three different PKC isoforms. Moreover, it was not competitive with ATP for enzyme inhibition. In cell-based assays, CID755673 blocked phorbol ester-induced endogenous PKD1 activation in LNCaP cells in a concentration-dependent manner. Functionally, CID755673 inhibited the known biological actions of PKD1 including phorbol ester-induced class IIa histone deacetylase 5 nuclear exclusion, vesicular stomatitis virus glycoprotein transport from the Golgi to the plasma membrane, and the ilimaquinone-induced Golgi fragmentation. Moreover, CID755673 inhibited prostate cancer cell proliferation, cell migration, and invasion. In summary, our findings indicate that CID755673 is a potent and selective PKD1 inhibitor with valuable pharmacological and cell biological potential.  相似文献   

18.
H Y Wang  E Friedman 《Life sciences》1990,47(16):1419-1425
Protein kinase C (PKC) activity and translocation in response to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA), serotonin (5-HT) and thrombin was assessed in human platelets. Stimulation with PMA and 5-HT for 10 minutes or thrombin for 1 minute elicited platelet PKC translocation from cytosol to membrane. The catecholamines, norepinephrine or epinephrine at 10 microM concentrations did not induce redistribution of platelet PKC. Serotonin (0.5-100 microM) and the specific 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10-100 microM) but not the 5-HT1A or 5-HT1B agonists, (+/-) 8-hydroxy-dipropylamino-tetralin (8-OH-DPAT) or 5-methoxy-3-3-(1,2,3,6-tetrahydro-4-pyridin) 1H-indole succinate (RU 24969) induced dose-dependent PKC translocations. Serotonin-evoked PKC translocation was blocked by selective 5-HT2 receptor antagonists, ketanserin and spiroperidol. These results suggest that, in human platelets, PMA, thrombin and 5-HT can elicit PKC translocation from cytosol to membrane. Serotonin-induced PKC translocation in platelets is mediated via 5-HT2 receptors.  相似文献   

19.
Recent studies have documented direct interactions between 14-3-3 proteins and several oncogene and proto-oncogene products involved in signal transduction pathways. Studies on the effects of 14-3-3 proteins on protein kinase C (PKC) activity in vitro have reported conflicting results, and previous attempts to demonstrate a direct association between PKC and 14-3-3 were unsuccessful. Here, we examined potential physical and functional interactions between PKC theta, a Ca(2+)-independent PKC enzyme which is expressed selectively in T lymphocytes, and the 14-3-3 tau isoform in vitro and in intact T cells. PKC theta and 14-3-3 tau coimmunoprecipitated from Jurkat T cells, and recombinant 14-3-3 tau interacted directly with purified PKC theta in vitro. Transient overexpression of 14-3-3 tau suppressed stimulation of the interleukin 2 (IL-2) promoter mediated by cotransfected wild-type or constitutively active PKC theta, as well as by endogenous PKC in ionomycin- and/or phorbol ester-stimulated cells. This did not represent a general inhibition of activation events, since PKC-independent (but Ca(2+)-dependent) activation of an IL-4 promoter element was not inhibited by 14-3-3 tau under similar conditions. Overexpression of wild-type 14-3-3 tau also inhibited phorbol ester-induced PKC theta translocation from the cytosol to the membrane in Jurkat cells, while a membrane-targeted form of 14-3-3 tau caused increased localization of PKC theta in the particulate fraction in unstimulated cells. Membrane-targeted 14-3-3 tau was more effective than wild-type 14-3-3 tau in suppressing PKC theta-dependent IL-2 promoter activity, suggesting that 14-3-3 tau inhibits the function of PKC theta not only by preventing its translocation to the membrane but also by associating with it. The interaction between 14-3-3 and PKC theta may represent an important general mechanism for regulating PKC-dependent signals and, more specifically, PKC theta-mediated functions during T-cell activation.  相似文献   

20.
Vasopressin, angiotensin II, epinephrine (alpha 1-adrenergic action) and phorbol 12-myristate 13-acetate (PMA) induce increases in membrane-associated protein kinase C activity concomitant with decreases in the cytosolic activity. The data indicate that the calcium-mobilizing hormones and the active phorbol ester induce translocation from the cytosol to the plasma membrane of this protein kinase. The protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, blocked the translocation to the membrane of this protein kinase induced by PMA and vasopressin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号