首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aspergillus niger has been grown in glucose- and maltose-limited recycling cultures to determine the maximum growth yield, the maximum product yield for glucoamylase production, and the maintenance requirements at very slow specific growth rates. Using the linear equation for substrate utilization, and using the experimental data from both recycling experiments, both the maximum growth yield, Yxsm, and the maximum product yield, Ypsm, could be determined. The values estimated were 157 g biomass per mol maltose for Yxsm and 100 g protein per mol maltose for Ypsm. Expressed on a C1-basis these values are 0.52 and 0.36 C-mole per C-mol for respectively Yxsm and Ypsm. The found value for Ypsm is half the value found for alkaline serine protease production in Bacillus lichoniformis, and it can be concluded that formation of extracellular protein is more energy consuming in filamentous fungi than in prokaryotic organisms. Maintenance requirements are no significant factor during growth of Aspergillus niger, and reported maintenance requirements are most probably due to differentiation.  相似文献   

2.
The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5–6.0, the specific glucoamylase productivity and the specific growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase producivity increased linearly with the specific growth rate in the range 0–0.1 h−1 and was constant in the range 0.1–0.2 h−1. Maltose and maltodextrin were non-inducing carbon sources compared to glucose, and the maximum specific growth rate was 0.19 ± 0.02 h−1 irrespective of whether glucose or maltose was the carbon source. In fed-batch cultivations, glucoamylase titres of up to 6.5 g l−1 were obtained even though the strain contained only one copy of the glaA gene. Received: 5 May 1999 / Received revision: 7 September 1999 / Accepted: 17 September 1999  相似文献   

3.
4.

Background  

The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS.  相似文献   

5.
Product formation of mycelial organisms, like Aspergillus niger, is intimately connected with their morphology. Pellet morphology is often requested for product formation. Therefore, it is important to reveal the influence of the hydrodynamic conditions on the morphological development. In the present study, pellet morphology and glucoamylase formation were studied under different agitation intensities of A. niger AB1.13. For pellet formation inside the bioreactor, without the use of precultures, it is necessary to work at low energy dissipation rates. Biomass growth and glucoamylase activity were correlated with energy dissipation. Furthermore, product yield was analysed in dependence of pellet size and concentration. The present work shows that simple equations based on Monod-kinetics can describe growth and product formation, in general, also in mycelian organisms. All measured morphological data, like pellet concentration, as well as glucoamylase formation, strongly depend on the hydrodynamic conditions.  相似文献   

6.
The effects of cell immobilization on the secretion of extracellular proteases and glucoamylase production by Aspergillus niger were investigated under a variety of immobilization techniques and culture conditions. Immobilization was achieved by means of cell attachment on metal surfaces or spore entrapment and subsequent growth on porous Celite beads. Free-suspension cultures were compared with immobilized mycelium under culture conditions that included growth in shake flasks and an airlift bioreactor. Cell attachment on metal surfaces minimized the secretion of proteases while enhancing glucoamylase production by the fungus. Growth on Celite beads in shake-flask cultures reduced the specific activity of the secreted proteases from 128 to 61 U g−1, while glucoamylase specific activity increased from 205 to 350 U g−1. The effect was more pronounced in bioreactor cultures. A reduction of six orders of magnitude in protease specific activities was observed when the fungus grew immobilized on a rolled metal screen, which served as the draft tube of an airlift bioreactor. Received 29 October 2001/ Accepted in revised form 14 June 2002  相似文献   

7.
The availability and demand of biosynthetic energy (ATP) is an important factor in the regulation of solvent production in steady state continuous cultures of Clostridium acetobutylicum. The effect of biomass recycle at a variety of dilution rates and recycle ratios under both glucose and non-glucose limited conditions on product yields and selectivities has been investigated. Under conditions of non-glucose limitation, when the ATP supply is not growth-limiting, a lower growth rate imposed by biomass recycle leads to a reduced demand for ATP and substantially higher acetone and butanol yields. When the culture is glucose limited, however, biomass recycle results in lower solvent yields and higher acid yields.List of Symbols A 600 absorbance at 600 nm - ATP adenosine triphosphate - C imol/dm3 concentration of componenti in the fermentor - C i 0 mol/dm3 concentration of componenti in the feed - D h–1 dilution rate - F dm3/h feed flow rate - FdH2 ferredoxin, reduced form - NAD nicotinamide adenine dinucleotide, oxidized form - NADH nicotinamide adenine dinucleotide, reduced form - NfF mmol/g/h NADH produced from oxidation of FdH2 per unit biomass per unit time - P dm3/h filtrate flow during biomass recycle operation - PCRP C-mole carbon per C-mole glucose utilized percent of (substrate) carbon recovered in products - R recycle ratio,P/F - SPR mmol/g/h specific production rate - X imol product/100 mol glucose utilized product yield - Y ATP g biomass/mol ATP biomass yield on ATP - Y GLU g biomass/mol glucose biomass yield on glucose - Y ig biomass/mol biomass yield on nutrienti - h–1 specific growth rate  相似文献   

8.
Metabolic network models describing growth of Escherichia coli on glucose, glycerol and acetate were derived from a genome scale model of E. coli. One of the uncertainties in the metabolic networks is the exact stoichiometry of energy generating and consuming processes. Accurate estimation of biomass and product yields requires correct information on the ATP stoichiometry. The unknown ATP stoichiometry parameters of the constructed E. coli network were estimated from experimental data of eight different aerobic chemostat experiments carried out with E. coli MG1655, grown at different dilution rates (0.025, 0.05, 0.1, and 0.3 h?1) and on different carbon substrates (glucose, glycerol, and acetate). Proper estimation of the ATP stoichiometry requires proper information on the biomass composition of the organism as well as accurate assessment of net conversion rates under well‐defined conditions. For this purpose a growth rate dependent biomass composition was derived, based on measurements and literature data. After incorporation of the growth rate dependent biomass composition in a metabolic network model, an effective P/O ratio of 1.49 ± 0.26 mol of ATP/mol of O, KX (growth dependent maintenance) of 0.46 ± 0.27 mol of ATP/C‐mol of biomass and mATP (growth independent maintenance) of 0.075 ± 0.015 mol of ATP/C‐mol of biomass/h were estimated using a newly developed Comprehensive Data Reconciliation (CDR) method, assuming that the three energetic parameters were independent of the growth rate and the used substrate. The resulting metabolic network model only requires the specific rate of growth, µ, as an input in order to accurately predict all other fluxes and yields. Biotechnol. Bioeng. 2010;107: 369–381. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
10.
Growth of Aspergillus niger and glucoamylase production correlated well with the water activity of the substrate (wheat bran plus corn flour) in a solid-state fermentation. Both were maximal at an initial water activity of 0.936. Glycoamylase reached 550 units/g dry substrate after 96 h.The authors are with the Biotechnology Unit, Regional Research Laboratory, CSIR, Trivandrum-695 019, India  相似文献   

11.
Summary Conidiation of Aspergillus niger was studied in carbon-limited and nitrogen-limited chemostat culture. Under citrate-limitation conidiation intensity varied inversely with dilution rate. Conidiophores were less complex than in aerial conidiation and at high dilution rates conidia occasionally developed from modified hyphal tips. Conidiation was difficult to achieve under glucose-limitation. At the low dilution rates that allowed limited conidiation steady state could not be maintained due to onset of autolysis. At higher dilution rates when steady state was readily obtained conidiation did not occur. The maximum yield constants under citrate-limitation and glucose-limitation were respectively 0.145 and 0.4 mg dry weight/mg substrate, while the relative specific maintenance values were 0.045 and 0.018 mg substrate/mg dry weight/h. Under ammonium-limitation with citrate as the carbon source there was no conidiation. When nitrate became the limiting nitrogen source conidiophore initiation occurred but biomass production was low and wash-out occurred at D=0.034 h-1.  相似文献   

12.
The β-mannanase gene (man1) from Aspergillus aculeatus MRC11624 (Izuka) was patented for application in the coffee industry. For production of the enzyme, the gene was originally cloned and expressed in Saccharomyces cerevisiae. However the level of production was found to be economically unfeasible. Here we report a 13-fold increase in enzyme production through the successful expression of β-mannanase of Aspergillus aculeatus MRC11624 in Aspergillus niger under control of the A. niger glyceraldehyde-3-phosphate dehydrogenase promoter (gpd P) and the A. awamori glucoamylase terminator (glaAT). The effect of medium composition on mannanase production was evaluated, and it was found that the glucose concentration and the organic nitrogen source had an effect on both the volumetric enzyme activity and the specific enzyme activity. The highest mannanase activity levels of 16,596 nkat ml−1 and 574 nkat mg−1 dcw were obtained for A. niger D15[man1] when cultivated in a process-viable medium containing corn steep liquor as the organic nitrogen source and high glucose concentrations.  相似文献   

13.
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grownAspergillus niger was increased 3–5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH 4 + , and further, the enzyme is repressed by increasing concentrations of NH 4 + . In contrast to other micro-organisms, theAspergillus niger enzyme was neither specifically inactivated by NH 4 + or L-glutamine nor regulated by covalent modification. Glutamine synthetase fromAspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity. Aspergillusniger glutamine synthetase was completely inactivated by two mol of phenyl-glyoxal and one mol of N-ethylmaleimide with second order rate constants of 3.8 M-1 min-1 and 760 M-1 min-1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH 4 + , Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.  相似文献   

14.
Extracellular human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression was studied under the control of the GAP promoter in recombinant Pichia pastoris in a series of continuous culture runs (dilution rates from 0.025 to 0.2 h−1). The inlet feed concentration was also varied and the steady state biomass concentration increased proportionally demonstrating efficient substrate utilization and constancy of the biomass yield coefficient (Yx/s) for a given dilution rate. The specific product formation rate (qP) showed a strong correlation with dilution rates demonstrating growth associated product formation of hGM-CSF. The volumetric product concentration achieved at the highest feed concentration (4×) and a dilution rate of 0.2 h−1 was 82 mg l−1 which was 5-fold higher compared to the continuous culture run with 1× feed concentration at the lowest dilution rate thus translating to a 40 fold increase in the volumetric productivity. The specific product yield (YP/X) increased slightly from 2 to 2.5 mg g−1, with increasing dilution rates, while it remained fairly invariant, for all feed concentrations demonstrating negligible product degradation or feed back inhibition. The robust nature of this expression system would make it easily amenable to scale up for industrial production.  相似文献   

15.
Corn steep liquor, peptone or NH inf4 sup+ salts increased the yield of glucoamylase from Aspergillus niger growing in a solid-state fermentation on rice bran up to 360 IU/g dry substrate over 96 h at 30°C.The authors are with the Biotechnology Unit, Regional Research Laboratory, CSIR, Trivandrum-695 019, India;  相似文献   

16.
The continuous production of citric acid from dairy wastewater was investigated using calcium-alginate immobilizedAspergillus niger ATCC 9142. The citric acid productivity and yield were strongly affected by the culture conditions. The optimal pH, temperature, and dilution rate were 3.0, 30°C, and 0.025 h−1, respectively. Under optimal culture conditions, the maximum productivity, concentration, and yield of citric acid produced by the calcium-alginate immobilizedAspergillus niger were 160 mg L−1 h−1, 4.5 g/L, and 70.3% respectively. The culture was continuously perfored for 20 days without any apparent loss in citric acid productivity. Conversely, under the same conditions with a batch shake-flask culture, the maximum productivity, citric acid concentration, and yield were only 63.3 mg L−1 h−1, 4.7 g/L and 51.4%, respectively. Therefore, the results suggest that the bioreactor used in this study could be potentially used for continuous citric acid production from dairy wastewater by applying calcium-alginate immobilizedAspergillus niger.  相似文献   

17.
18.
【目的】建立对糖化酶生产菌种黑曲霉随机突变文库进行筛选的方法,以获得糖化酶酶活提高的突变菌株。【方法】以一株可产糖化酶的黑曲霉菌株Aspergillus niger X1为出发菌株,经硫酸二乙酯诱变获得突变文库,采用葡萄糖的结构类似物——2-脱氧葡萄糖进行筛选,并在筛选过程中逐渐提高2-脱氧葡萄糖浓度,定向选育具有2-脱氧葡萄糖抗性、高产糖化酶的突变株。【结果】获得的高产突变菌株DG36摇瓶发酵糖化酶产量比出发菌株A.niger X1提高22.2%–33.8%,经工业水平50 m~3罐发酵测试,突变株DG36发酵128 h糖化酶活可达49094 U/m L,在相同发酵时间内,其酶活较出发菌株A.niger X1提高32.8%,发酵时间缩短16.9%。【结论】本研究开发了一种以2-脱氧葡萄糖为抗性标记选育高产糖化酶突变株的方法,所得突变株DG36遗传性状稳定,与出发菌相比具有菌丝粗壮、产酶期提前、糖化酶活高、发酵时间短、有利于发酵后处理的优点。  相似文献   

19.
Vibrio succinogenes which gains all the ATP by anaerobic electron transport phosphorylation, was grown in continuous culture on a defined medium with formate and fumarate as sole energy sources. The growth yield at infinite dilution rate (Y max) was obtained by extrapolation from the growth yields measured at various dilution rates. With formate as the growth limiting substrate, Y max was found as 14 g dry cells/mol formate. Under these conditions growth was limited by the rate of energy supply, because formate is used only as a catabolic substrate (Bronder et al. 1982). The Y ATP max calculated from the ATP requirement for cell synthesis was 18 g dry cells/mol ATP. This gives an ATP/2e ratio of 0.8. The ATP/2e ratio in vitro had been measured as 1 (Kröger and Winkler 1981). It is concluded that growing V. succinogenes gain at least 80% the stoichiometrically possible amount of ATP, when growth is limited by energy supply.  相似文献   

20.
Based on morphological characteristics the taxa included in the Aspergillus aggregate can hardly be differentiated. For that reason the phylogeny of this genus was revised several times as different criteria, from morphological to later molecular, were used. We found, comparing nucleotide sequences of the ITS-region, that the strain Aspergillus niger (DSM 823) which is claimed to be identical to the strains ATCC 10577, IMI 027809, NCTC 7193 and NRRL 2322 can be molecularly classified as Aspergillus tubingensis, exhibiting 100% identity with the A. tubingensis CBS strains 643.92 and 127.49. We amplified, cloned and sequenced a new glucoamylase gene (glaA) from this strain of A. tubingensis (A. niger DSM 823) using primers derived from A. niger glucoamylase G1. The amplified cDNA fragment of 2013 bp contained an open reading frame encoding 648 amino acid residues. The calculated molecular mass of the glucoamylase, deduced from the amino acid sequence, was 68 kDa. The nucleotide sequence of glaA showed 99% similarity with glucoamylases from Aspergillus kawachii and Aspergillus shirousami, whereas the similarity with the glucoamylase G1 from A. niger was 92% An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号