首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
The introduction or creation of metabolic pathways in microbial hosts has allowed for the production of complex chemicals of therapeutic and industrial importance. However, these pathways rarely function optimally when first introduced into the host organism and can often deleteriously affect host growth, resulting in suboptimal yields of the desired product. Common methods used to improve production from engineered biosynthetic pathways include optimizing codon usage, enhancing production of rate-limiting enzymes, and eliminating the accumulation of toxic intermediates or byproducts to improve cell growth. We have employed these techniques to improve production of amorpha-4,11-diene (amorphadiene), a precursor to the anti-malarial compound artemisinin, by an engineered strain of Escherichia coli. First we developed a simple cloning system for expression of the amorphadiene biosynthetic pathway in E. coli, which enabled the identification of two rate-limiting enzymes (mevalonate kinase (MK) and amorphadiene synthase (ADS)). By optimizing promoter strength to balance expression of the encoding genes we alleviated two pathway bottlenecks and improved production five fold. When expression of these genes was further increased by modifying plasmid copy numbers, a seven-fold increase in amorphadiene production over that from the original strain was observed. The methods demonstrated here are applicable for identifying and eliminating rate-limiting steps in other constructed biosynthetic pathways.  相似文献   

2.
We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6,051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol.  相似文献   

3.
Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5 mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD+-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5 mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds.  相似文献   

4.
Phenotype-centric modeling enables a paradigm shift in the analysis of mechanistic models. It brings the focus to a network's biochemical phenotypes and their relationship with measurable traits (e.g., product yields, system dynamics, signal amplification factors, etc.) and away from computationally intensive simulation-centric modeling. Here, we explore applications of this new modeling strategy in the field of rational metabolic engineering using the amorphadiene biosynthetic network as a case study. This network has previously been studied using a mechanistic model and the simulation-centric strategy, and thus provides an excellent means to compare and contrast results obtained from these two very different strategies. We show that the phenotype-centric strategy, without values for the parameters, not only identifies beneficial intervention strategies obtained with the simulation-centric strategy, but it also provides an understanding of the mechanistic context for the validity of these predictions. Additionally, we propose a set of hypothetical strains with the potential to outperform reported production strains and to enhance the mechanistic understanding of the amorphadiene biosynthetic network. Further, we identify the landscape of possible intervention strategies for the given model. We believe that phenotype-centric modeling can advance the field of rational metabolic engineering by enabling the development of next generation kinetics-based algorithms and methods that do not rely on a priori knowledge of kinetic parameters but allow a structured, global analysis of system design in the parameter space.  相似文献   

5.
Many terpenoids have important pharmacological activity and commercial value; however, application of these terpenoids is often limited by problems associated with the production of sufficient amounts of these molecules. The use of Saccharomyces cerevisiae (S. cerevisiae) for the production of heterologous terpenoids has achieved some success. The objective of this study was to identify S. cerevisiae knockout targets for improving the synthesis of heterologous terpeniods. On the basis of computational analysis of the S. cerevisiae metabolic network, we identified the knockout sites with the potential to promote terpenoid production and the corresponding single mutant was constructed by molecular manipulations. The growth rates of these strains were measured and the results indicated that the gene deletion had no adverse effects. Using the expression of amorphadiene biosynthesis as a testing model, the gene deletion was assessed for its effect on the production of exogenous terpenoids. The results showed that the dysfunction of most genes led to increased production of amorphadiene. The yield of amorphadiene produced by most single mutants was 8–10-fold greater compared to the wild type, indicating that the knockout sites can be engineered to promote the synthesis of exogenous terpenoids.  相似文献   

6.
An increase in compactin (ML-236B) production was achieved by introducing a whole compactin biosynthetic gene cluster or the regulatory gene mlcR into compactin high-producing Penicillium citrinum. In the previous report, we introduced mlcR encoding the positive regulator of compactin biosynthetic genes into compactin high-producing strain no. 41520, and most of the transformants produced higher amounts of compactin. Here, we characterize one of the resulting high producers (strain TIR-35, which produced 50% more compactin) and reveal that TIR-35 contained five copies of mlcR and that early, enhanced expression of mlcR caused compactin overproduction. Similarly, the introduction of mlcR into strain T48.19, which was created previously from strain no. 41520 by introducing a partial compactin biosynthetic gene cluster, enhanced compactin production further. Our results indicated that genetic engineering is an effective tool to improve compactin production, even in compactin high producers.  相似文献   

7.
The genes encoding the mevalonate-based farnesyl pyrophosphate (FPP) biosynthetic pathway were encoded in two operons and expressed in Escherichia coli to increase the production of sesquiterpenes. Inefficient translation of several pathway genes created bottlenecks and led to the accumulation of several pathway intermediates, namely, mevalonate and FPP, and suboptimal production of the sesquiterpene product, amorphadiene. Because of the difficulty in choosing ribosome binding sites (RBSs) to optimize translation efficiency, a combinatorial approach was used to choose the most appropriate RBSs for the genes of the lower half of the mevalonate pathway (mevalonate to amorphadiene). RBSs of various strengths, selected based on their theoretical strengths, were cloned 5′ of the genes encoding mevalonate kinase, phosphomevalonate kinase, mevalonate diphosphate decarboxylase, and amorphadiene synthase. Operons containing one copy of each gene and all combinations of RBSs were constructed and tested for their impact on growth, amorphadiene production, enzyme level, and accumulation of select pathway intermediates. Pathways with one or more inefficiently translated enzymes led to the accumulation of pathway intermediates, slow growth, and low product titers. Choosing the most appropriate RBS combination and carbon source, we were able to reduce the accumulation of toxic metabolic intermediates, improve growth, and improve the production of amorphadiene approximately fivefold. This work demonstrates that balancing flux through a heterologous pathway and maintaining steady growth are key determinants in optimizing isoprenoid production in microbial hosts.  相似文献   

8.
9.
We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol.  相似文献   

10.
The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.  相似文献   

11.
Although optimality of microbial metabolism under genetic and environmental perturbations is well studied, the effects of introducing heterologous reactions on the overall metabolism are not well understood. This point is important in the field of metabolic engineering because heterologous reactions are more frequently introduced into various microbial hosts. The genome-scale metabolic simulations of Escherichia coli strains engineered to produce 1,4-butanediol, 1,3-propanediol, and amorphadiene suggest that microbial metabolism shows much different responses to the introduced heterologous reactions in a strain-specific manner than typical gene knockouts in terms of the energetic status (e.g., ATP and biomass generation) and chemical production capacity. The 1,4-butanediol and 1,3-propanediol producers showed greater metabolic optimality than the wild-type strains and gene knockout mutants for the energetic status, while the amorphadiene producer was metabolically less optimal. For the optimal chemical production capacity, additional gene knockouts were most effective for the strain producing 1,3-propanediol, but not for the one producing 1,4-butanediol. These observations suggest that strains having heterologous metabolic reactions have metabolic characteristics significantly different from those of the wild-type strain and single gene knockout mutants. Finally, comparison of the theoretically predicted and 13C-based flux values pinpoints pathways with non-optimal flux values, which can be considered as engineering targets in systems metabolic engineering strategies. To our knowledge, this study is the first attempt to quantitatively characterize microbial metabolisms with different heterologous reactions. The suggested potential reasons behind each strain’s different metabolic responses to the introduced heterologous reactions should be carefully considered in strain designs.  相似文献   

12.
In metabolic engineering, unbalanced microbial carbon distribution has long blocked the further improvement in yield and productivity of high-volume natural metabolites. Current studies mostly focus on regulating desired biosynthetic pathways, whereas few strategies are available to maximize L-threonine efficiently. Here, we present a strategy to guarantee the supply of reduced cofactors and actualize L-threonine maximization by regulating cellular carbon distribution in central metabolic pathways. A thermal switch system was designed and applied to divide the whole fermentation process into two stages: growth and production. This system could rebalance carbon substrates between pyruvate and oxaloacetate by controlling the heterogenous expression of pyruvate carboxylase and oxaloacetate decarboxylation that responds to temperature. The system was tested in an L-threonine producer Escherichia coli TWF001, and the resulting strain TWF106/pFT24rp overproduced L-threonine from glucose with 111.78% molar yield. The thermal switch system was then employed to switch off the L-alanine synthesis pathway, resulting in the highest L-threonine yield of 124.03%, which exceeds the best reported yield (87.88%) and the maximum available theoretical value of L-threonine production (122.47%). This inducer-free genetic circuit design can be also developed for other biosynthetic pathways to increase product conversion rates and shorten production cycles.  相似文献   

13.
We generated a high riboflavin-producing mutant strain of Ashbya gossypii by disparity mutagenesis using mutation of DNA polymerase δ in the lagging strand, resulting in loss of DNA repair function by the polymerase. Among 1,353 colonies generated in the first screen, 26 mutants produced more than 3 g/L of riboflavin. By the second screen and single-colony isolation, nine strains that produced more than 5.2 g/L of riboflavin were selected as high riboflavin-producing strains. These mutants were resistant to oxalic acid and hydrogen peroxide as antimetabolites. One strain (W122032) produced 13.7 g/L of riboflavin in a 3-L fermentor using an optimized medium. This represents a ninefold improvement on the production of the wild-type strain. Proteomic analysis revealed that ADE1, RIB1, and RIB5 proteins were expressed at twofold higher levels in this strain than in the wild type. DNA microarray analysis showed that purine and riboflavin biosynthetic pathways were upregulated, while pathways related to carbon source assimilation, energy generation, and glycolysis were downregulated. Genes in the riboflavin biosynthetic pathway were significantly overexpressed during both riboflavin production and stationary phases, for example, RIB1 and RIB3 were expressed at greater than sixfold higher levels in this strain compared to the wild type. These results indicate that the improved riboflavin production in this strain is related to a shift in carbon flux from β-oxidation to the riboflavin biosynthetic pathway.  相似文献   

14.
15.
Isoprenoids are the most numerous and structurally diverse family of natural products. Terpenoids, a class of isoprenoids often isolated from plants, are used as commercial flavor and fragrance compounds and antimalarial or anticancer drugs. Because plant tissue extractions typically yield low terpenoid concentrations, we sought an alternative method to produce high-value terpenoid compounds, such as the antimalarial drug artemisinin, in a microbial host. We engineered the expression of a synthetic amorpha-4,11-diene synthase gene and the mevalonate isoprenoid pathway from Saccharomyces cerevisiae in Escherichia coli. Concentrations of amorphadiene, the sesquiterpene olefin precursor to artemisinin, reached 24 microg caryophyllene equivalent/ml. Because isopentenyl and dimethylallyl pyrophosphates are the universal precursors to all isoprenoids, the strains developed in this study can serve as platform hosts for the production of any terpenoid compound for which a terpene synthase gene is available.  相似文献   

16.
3-脱氢莽草酸是芳香族氨基酸合成代谢途径中的一种重要中间产物。除可作为一种高效的抗氧化剂,还可用于合成己二酸、香草醛等一些重要的化工产品,具有重要的应用价值。相关研究证明具有去酪氨酸反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroFFBR以及转酮醇酶基因tktA可以有效影响3-脱氢莽草酸的过量合成。通过增加aroFFBR和tktA串联过量表达的拷贝数,可使工程菌株在摇瓶发酵条件下3-脱氢莽草酸产量提高2.93倍。通过同源重组无痕基因敲除技术依次敲除出发菌大肠杆菌Escherichia coli AB2834的乳酸、乙酸、乙醇等副产物合成途径中的重要基因ldhA、ackA-pta和adhE,可使工程菌株的3-脱氢莽草酸产量进一步提高,达到了1.83 g/L,是初始出发菌株大肠杆菌E.coli AB2834产量的6.7倍。利用5 L发酵罐进行分批补料发酵,62 h后工程菌株3-脱氢莽草酸产量达到了25.48 g/L。本研究可为构建有应用前景的3-脱氢莽草酸生产菌株提供重要参考。  相似文献   

17.
In vitro recombination methods have enabled one-step construction of large DNA sequences from multiple parts. Although synthetic biological circuits can in principle be assembled in the same fashion, they typically contain repeated sequence elements such as standard promoters and terminators that interfere with homologous recombination. Here we use a computational approach to design synthetic, biologically inactive unique nucleotide sequences (UNSes) that facilitate accurate ordered assembly. Importantly, our designed UNSes make it possible to assemble parts with repeated terminator and insulator sequences, and thereby create insulated functional genetic circuits in bacteria and mammalian cells. Using UNS-guided assembly to construct repeating promoter-gene-terminator parts, we systematically varied gene expression to optimize production of a deoxychromoviridans biosynthetic pathway in Escherichia coli. We then used this system to construct complex eukaryotic AND-logic gates for genomic integration into embryonic stem cells. Construction was performed by using a standardized series of UNS-bearing BioBrick-compatible vectors, which enable modular assembly and facilitate reuse of individual parts. UNS-guided isothermal assembly is broadly applicable to the construction and optimization of genetic circuits and particularly those requiring tight insulation, such as complex biosynthetic pathways, sensors, counters and logic gates.  相似文献   

18.
Recombinant DNA technology has facilitated a rapid increase in our knowledge of beta-lactam antibiotic biosynthesis. Using the tools of this technology, beta-lactam biosynthetic genes and proteins have been characterized at the molecular level, cephalosporin-C production has been improved, new beta-lactams produced, and novel beta-lactam biosynthetic pathways have been constructed.  相似文献   

19.
Lignin is one largely untapped natural resource that can be exploited as a raw material for the bioproduction of value-added chemicals. Meanwhile, the current petroleum-based process for the production of adipic acid faces sustainability challenges. Here we report the successful engineering of Pseudomonas putida KT2440 strain for the direct biosynthesis of adipic acid from lignin-derived aromatics. The devised bio-adipic acid route features an artificial biosynthetic pathway that is connected to the endogenous aromatics degradation pathway of the host at the branching point, 3-ketoadipoyl-CoA, by taking advantage of the unique carbon skeleton of this key intermediate. Studies of the metabolism of 3-ketoadipoyl-CoA led to the discovery of crosstalk between two aromatics degradation pathways in KT2440. This knowledge facilitated the formulation and implementation of metabolic engineering strategies to optimize the carbon flux into the biosynthesis of adipic acid. By optimizing pathway expression and cultivation conditions, an engineered strain AA-1 produced adipic acid at 0.76 g/L and 18.4% molar yield under shake-flask conditions and 2.5 g/L and 17.4% molar yield under fermenter-controlled conditions from common aromatics that can be derived from lignin. This represents the first example of the direct adipic acid production from model compounds of lignin depolymerization.  相似文献   

20.
3-Hydroxy-γ-butyrolactone (3HBL) is an attractive building block owing to its broad applications in pharmaceutical industry. Currently, 3HBL is commercially produced by chemical routes using petro-derived carbohydrates, which involves hazardous materials and harsh processing conditions. Only one biosynthetic pathway has been reported for synthesis of 3HBL and its hydrolyzed form 3,4-dihydroxybutyric acid (3,4-DHBA) using glucose and glycolic acid as the substrates and coenzyme A as the activator, which involves multiple steps (>10 steps) and suffers from low productivity and yield. Here we established a novel five-step biosynthetic pathway for 3,4-DHBA generation from D-xylose based on the non-phosphorylative D-xylose metabolism, which led to efficient production of 3,4-DHBA in Escherichia coli. Pathway optimization by incorporation of efficient enzymes for each step and host strain engineering by knocking out competing pathways enabled 1.27 g/L 3,4-DHBA produced in shake flasks, which is the highest titer reported so far. The novel pathway established in engineered E. coli strain demonstrates a new route for 3,4-DHBA biosynthesis from xylose, and this engineered pathway has great potential for industrial biomanufacturing of 3,4-DHBA and 3HBL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号