首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Metabolic Flux Analysis (MFA) based on isotope labeling experiments (ILEs) is a widely established tool for determining fluxes in metabolic pathways. Isotope labeling networks (ILNs) contain all essential information required to describe the flow of labeled material in an ILE. Whereas recent experimental progress paves the way for high-throughput MFA, large network investigations and exact statistical methods, these developments are still limited by the poor performance of computational routines used for the evaluation and design of ILEs. In this context, the global analysis of ILN topology turns out to be a clue for realizing large speedup factors in all required computational procedures.  相似文献   

2.

Background  

A logical model of the known metabolic processes in S. cerevisiae was constructed from iFF708, an existing Flux Balance Analysis (FBA) model, and augmented with information from the KEGG online pathway database. The use of predicate logic as the knowledge representation for modelling enables an explicit representation of the structure of the metabolic network, and enables logical inference techniques to be used for model identification/improvement.  相似文献   

3.
The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species.  相似文献   

4.

Background

It is a daunting task to identify all the metabolic pathways of brain energy metabolism and develop a dynamic simulation environment that will cover a time scale ranging from seconds to hours. To simplify this task and make it more practicable, we undertook stoichiometric modeling of brain energy metabolism with the major aim of including the main interacting pathways in and between astrocytes and neurons.

Model

The constructed model includes central metabolism (glycolysis, pentose phosphate pathway, TCA cycle), lipid metabolism, reactive oxygen species (ROS) detoxification, amino acid metabolism (synthesis and catabolism), the well-known glutamate-glutamine cycle, other coupling reactions between astrocytes and neurons, and neurotransmitter metabolism. This is, to our knowledge, the most comprehensive attempt at stoichiometric modeling of brain metabolism to date in terms of its coverage of a wide range of metabolic pathways. We then attempted to model the basal physiological behaviour and hypoxic behaviour of the brain cells where astrocytes and neurons are tightly coupled.

Results

The reconstructed stoichiometric reaction model included 217 reactions (184 internal, 33 exchange) and 216 metabolites (183 internal, 33 external) distributed in and between astrocytes and neurons. Flux balance analysis (FBA) techniques were applied to the reconstructed model to elucidate the underlying cellular principles of neuron-astrocyte coupling. Simulation of resting conditions under the constraints of maximization of glutamate/glutamine/GABA cycle fluxes between the two cell types with subsequent minimization of Euclidean norm of fluxes resulted in a flux distribution in accordance with literature-based findings. As a further validation of our model, the effect of oxygen deprivation (hypoxia) on fluxes was simulated using an FBA-derivative approach, known as minimization of metabolic adjustment (MOMA). The results show the power of the constructed model to simulate disease behaviour on the flux level, and its potential to analyze cellular metabolic behaviour in silico.

Conclusion

The predictive power of the constructed model for the key flux distributions, especially central carbon metabolism and glutamate-glutamine cycle fluxes, and its application to hypoxia is promising. The resultant acceptable predictions strengthen the power of such stoichiometric models in the analysis of mammalian cell metabolism.  相似文献   

5.

Background  

Flux variability analysis is often used to determine robustness of metabolic models in various simulation conditions. However, its use has been somehow limited by the long computation time compared to other constraint-based modeling methods.  相似文献   

6.

Background  

Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates.  相似文献   

7.

Background

Metabolic networks are complex and system of highly connected chemical reactions and hence it needs a system level computational approach to identify the genotype- phenotype relationship. The study of essential genes and reactions and synthetic lethality of genes and reactions plays a crucial role in explaining functional links between genes and gene function predictions.

Methods

Flux balance analysis (FBA) has been developed as a powerful method for the in silico analyses of metabolic networks. In this study, we present the comparative analysis of the genomic scale metabolic networks of the four microorganisms i.e. Salmonella typhimurium, Mycobacterium tuberculosis, Staphylococcus aureus, and Helicobacter pylori. The fluxes of all reaction were obtained and the growth rate of the organism was calculated by setting the biomass reaction as the objective function.

Results & Conclusions

The average lethality fraction of all the four organisms studied ranged from 0.2 to 0.6. It was also observed that there are very few metabolites which are highly connected. Those metabolites that are highly connected are supposed to be the ‘global players’ similar to the hub protein in the protein–protein interaction network.
  相似文献   

8.

Background

The main objective of flux balance analysis (FBA) is to obtain quantitative predictions of metabolic fluxes of an organism, and it is necessary to use an appropriate objective function to guarantee a good estimation of those fluxes.

Methodology

In this study, the predictive performance of FBA was evaluated, using objective functions arising from the linear combination of different cellular objectives. This approach is most suitable for eukaryotic cells, owing to their multiplicity of cellular compartments. For this reason, Saccharomyces cerevisiae was used as model organism, and its metabolic network was represented using the genome-scale metabolic model iMM904. As the objective was to evaluate the predictive performance from the FBA using the kind of objective function previously described, substrate uptake and oxygen consumption were the only input data used for the FBA. Experimental information about microbial growth and exchange of metabolites with the environment was used to assess the quality of the predictions.

Conclusions

The quality of the predictions obtained with the FBA depends greatly on the knowledge of the oxygen uptake rate. For the most of studied classifications, the best predictions were obtained with “maximization of growth”, and with some combinations that include this objective. However, in the case of exponential growth with unknown oxygen exchange flux, the objective function “maximization of growth, plus minimization of NADH production in cytosol, plus minimization of NAD(P)H consumption in mitochondrion” gave much more accurate estimations of fluxes than the obtained with any other objective function explored in this study.  相似文献   

9.

Background  

Genome-scale flux models are useful tools to represent and analyze microbial metabolism. In this work we reconstructed the metabolic network of the lactic acid bacteria Lactococcus lactis and developed a genome-scale flux model able to simulate and analyze network capabilities and whole-cell function under aerobic and anaerobic continuous cultures. Flux balance analysis (FBA) and minimization of metabolic adjustment (MOMA) were used as modeling frameworks.  相似文献   

10.

Background

Dynamic Flux Balance Analysis (DFBA) is a dynamic simulation framework for biochemical processes. DFBA can be performed using different approaches such as static optimization (SOA), dynamic optimization (DOA), and direct approaches (DA). Few existing simulators address the theoretical and practical challenges of nonunique exchange fluxes or infeasible linear programs (LPs). Both are common sources of failure and inefficiencies for these simulators.

Results

DFBAlab, a MATLAB-based simulator that uses the LP feasibility problem to obtain an extended system and lexicographic optimization to yield unique exchange fluxes, is presented. DFBAlab is able to simulate complex dynamic cultures with multiple species rapidly and reliably, including differential-algebraic equation (DAE) systems. In addition, DFBAlab’s running time scales linearly with the number of species models. Three examples are presented where the performance of COBRA, DyMMM and DFBAlab are compared.

Conclusions

Lexicographic optimization is used to determine unique exchange fluxes which are necessary for a well-defined dynamic system. DFBAlab does not fail during numerical integration due to infeasible LPs. The extended system obtained through the LP feasibility problem in DFBAlab provides a penalty function that can be used in optimization algorithms.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0409-8) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background  

Quantitative knowledge of intracellular fluxes is important for a comprehensive characterization of metabolic networks and their functional operation. In contrast to direct assessment of metabolite concentrations, in vivo metabolite fluxes must be inferred indirectly from measurable quantities in 13C experiments. The required experience, the complicated network models, large and heterogeneous data sets, and the time-consuming set-up of highly controlled experimental conditions largely restricted metabolic flux analysis to few expert groups. A conceptual simplification of flux analysis is the analytical determination of metabolic flux ratios exclusively from MS data, which can then be used in a second step to estimate absolute in vivo fluxes.  相似文献   

12.
Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems.  相似文献   

13.

Background  

The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes.  相似文献   

14.
Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression), extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB). Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.  相似文献   

15.

Background  

A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism.  相似文献   

16.

Background  

Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit.  相似文献   

17.

Background  

Constraint-based models allow the calculation of the metabolic flux states that can be exhibited by cells, standing out as a powerful analytical tool, but they do not determine which of these are likely to be existing under given circumstances. Typical methods to perform these predictions are (a) flux balance analysis, which is based on the assumption that cell behaviour is optimal, and (b) metabolic flux analysis, which combines the model with experimental measurements.  相似文献   

18.
Constraint-based modeling methods, such as Flux Balance Analysis (FBA), have been extensively used to decipher complex, information rich -omics datasets to elicit system-wide behavioral patterns of cellular metabolism. FBA has been successfully used to gain insight in a wide range of applications, such as range of substrate utilization, product yields and to design metabolic engineering strategies to improve bioprocess performance. A well-known challenge associated with large genome-scale metabolic networks is that they result in underdetermined problem formulations. Consequently, rather than unique solutions, FBA and related methods examine ranges of reaction flux values that are consistent with the studied physiological conditions. The wider the reported flux ranges, the higher the uncertainty in the determination of basic reaction properties, limiting interpretability of and confidence in the results. Herein, we propose a new, computationally efficient approach that refines flux range predictions by constraining reaction fluxes on the basis of the elemental balance of carbon. We compared carbon constraint FBA (ccFBA) against experimentally-measured intracellular fluxes using the latest CHO GEM (iCHO1766) and were able to substantially improve the accuracy of predicted flux values compared with FBA. ccFBA can be used as a stand-alone method but is also compatible with and complimentary to other constraint-based approaches.  相似文献   

19.

Background  

Elementary mode analysis of metabolic pathways has proven to be a valuable tool for assessing the properties and functions of biochemical systems. However, little comprehension of how individual elementary modes are used in real cellular states has been achieved so far. A quantitative measure of fluxes carried by individual elementary modes is of great help to identify dominant metabolic processes, and to understand how these processes are redistributed in biological cells in response to changes in environmental conditions, enzyme kinetics, or chemical concentrations.  相似文献   

20.

Background  

As a continuation of our earlier work, we present in this study a Kalman filtering based algorithm for the elimination of motion artifacts present in Near Infrared spectroscopy (NIR) measurements. Functional NIR measurements suffer from head motion especially in real world applications where movement cannot be restricted such as studies involving pilots, children, etc. Since head movement can cause fluctuations unrelated to metabolic changes in the blood due to the cognitive activity, removal of these artifacts from NIR signal is necessary for reliable assessment of cognitive activity in the brain for real life applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号