首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: BACKGROUND: Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. RESULTS: When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, the classification of proteins into structural families can be viewed as graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may group in the same cluster a subset of 3D structures that do not share a common substructure. To overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and outputs a reduced graph in which no ternary constraints are violated. Our proposition is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. We applied this method to ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. CONCLUSIONS: We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP.  相似文献   

2.
We introduce the PSSH ('Protein Sequence-to-Structure Homologies') database derived from HSSP2, an improved version of the HSSP ('Homology-derived Secondary Structure of Proteins') database [Dodge et al. (1998) Nucleic Acids Res., 26, 313-315]. Whereas each HSSP entry lists all protein sequences related to a given 3D structure, PSSH is the 'inverse', with each entry listing all structures related to a given sequence. In addition, we introduce two other derived databases: HSSPchain, in which each entry lists all sequences related to a given PDB chain, and HSSPalign, in which each entry gives details of one sequence aligned onto one PDB chain. This re-organization makes it easier to navigate from sequence to structure, and to map sequence features onto 3D structures. Currently (September 2002), PSSH provides structural information for over 400 000 protein sequences, covering 48% of SWALL and 61% of SWISS-PROT sequences; HSSPchain provides sequence information for over 25 000 PDB chains, and HSSPalign gives over 14 million sequence-to-structure alignments. The databases can be accessed via SRS 3D, an extension to the SRS system, at http://srs3d.ebi.ac.uk/.  相似文献   

3.

Background  

Design of protein structure comparison algorithm is an important research issue, having far reaching implications. In this article, we describe a protein structure comparison scheme, which is capable of detecting correct alignments even in difficult cases, e.g. non-topological similarities. The proposed method computes protein structure alignments by comparing, small substructures, called neighborhoods. Two different types of neighborhoods, sequence and structure, are defined, and two algorithms arising out of the scheme are detailed. A new method for computing equivalences having non-topological similarities from pairwise similarity score is described. A novel and fast technique for comparing sequence neighborhoods is also developed.  相似文献   

4.
Databases of multiple sequence alignments are a valuable aid to protein sequence classification and analysis. One of the main challenges when constructing such a database is to simultaneously satisfy the conflicting demands of completeness on the one hand and quality of alignment and domain definitions on the other. The latter properties are best dealt with by manual approaches, whereas completeness in practice is only amenable to automatic methods. Herein we present a database based on hidden Markov model profiles (HMMs), which combines high quality and completeness. Our database, Pfam, consists of parts A and B. Pfam-A is curated and contains well-characterized protein domain families with high quality alignments, which are maintained by using manually checked seed alignments and HMMs to find and align all members. Pfam-B contains sequence families that were generated automatically by applying the Domainer algorithm to cluster and align the remaining protein sequences after removal of Pfam-A domains. By using Pfam, a large number of previously unannotated proteins from the Caenorhabditis elegans genome project were classified. We have also identified many novel family memberships in known proteins, including new kazal, Fibronectin type III, and response regulator receiver domains. Pfam-A families have permanent accession numbers and form a library of HMMs available for searching and automatic annotation of new protein sequences. Proteins: 28:405–420, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
PALI is a database of structure-based sequence alignments and phylogenetic relationships derived on the basis of three-dimensional structures of homologous proteins. This database enables grouping of pairs of homologous protein structures on the basis of their sequence identity calculated from the structure-based alignment and PALI also enables association of a new sequence to a family and automatic generation of a dendrogram combining the query sequence and homologous protein structures.  相似文献   

6.
7.
Most bioinformatics analyses require the assembly of a multiple sequence alignment. It has long been suspected that structural information can help to improve the quality of these alignments, yet the effect of combining sequences and structures has not been evaluated systematically. We developed 3DCoffee, a novel method for combining protein sequences and structures in order to generate high-quality multiple sequence alignments. 3DCoffee is based on TCoffee version 2.00, and uses a mixture of pairwise sequence alignments and pairwise structure comparison methods to generate multiple sequence alignments. We benchmarked 3DCoffee using a subset of HOMSTRAD, the collection of reference structural alignments. We found that combining TCoffee with the threading program Fugue makes it possible to improve the accuracy of our HOMSTRAD dataset by four percentage points when using one structure only per dataset. Using two structures yields an improvement of ten percentage points. The measures carried out on HOM39, a HOMSTRAD subset composed of distantly related sequences, show a linear correlation between multiple sequence alignment accuracy and the ratio of number of provided structure to total number of sequences. Our results suggest that in the case of distantly related sequences, a single structure may not be enough for computing an accurate multiple sequence alignment.  相似文献   

8.

Background  

An increasing number of bioinformatics methods are considering the phylogenetic relationships between biological sequences. Implementing new methodologies using the maximum likelihood phylogenetic framework can be a time consuming task.  相似文献   

9.

Background  

We thoroughly analyse the results of 40 blind predictions for which an experimental answer was made available at the fourth meeting on the critical assessment of protein structure methods (CASP4). Using our comparative modelling and fold recognition methodologies, we made 29 predictions for targets that had sequence identities ranging from 50% to 10% to the nearest related protein with known structure. Using our ab initio methodologies, we made eleven predictions for targets that had no detectable sequence relationships.  相似文献   

10.
11.
An efficient algorithm is described to locate locally optimalalignments between two sequences allowing for insertions anddeletions. The algorithm is based on that of Smith and Watermanwhich returns the single best local alignment. However, thealgorithm described here permits all non-intersecting locallyoptimal alignments to be determined in a single pass throughthe comparison matrit The algorithm simplifies the locationof repeats, multiple domains and shuffled moz and is fast enoughto be used on a conventional workstation to scan large sequencedatabanks.  相似文献   

12.
Protein phosphatases play essential roles in many cellular processes through the reversible protein phosphorylation that dictates many signal transduction pathways among organisms. Based on an in silico analysis, we classified 163 and 164 non-redundant protein phosphatases in rice and Arabidopsis, respectively. Protein serine/threonine phosphatases make up 67% of the total in both plants, in contrast to those of human, where this fraction is about 27%. Based on domain organization and intron composition analyses, we found that protein phosphatases in the two plants are highly conserved in structure. Evolutionary analysis suggests that segmental duplications occurring 40–70 million years ago, contributed to the limited expansion of protein phosphatases. Gene expression analysis suggests that most phosphatases have broad expression spectra, with high abundance in four surveyed tissues (root, leaf, inflorescence, and seedling); only 46 and 12 phosphatases expressed in a single tissue of rice and Arabidopsis, respectively, regardless of their expression levels. Promoter analysis among different phosphatase subfamilies demonstrates a variable distribution of the w-box (a cis-element involved in disease resistance) between rice and Arabidopsis.  相似文献   

13.
A new method to analyze the similarity between multiply aligned protein motifs (blocks) was developed. It identifies sets of consistently aligned blocks. These are found to be protein regions of similar function and structure that appear in different contexts. For example, the Rossmann fold ligand-binding region is found similar to TIM barrel and methylase regions, various protein families are predicted to have a TIM-barrel fold and the structural relation between the ClpP protease and crotonase folds is identified from their sequence. Besides identifying local structure features, sequence similarity across short sequence-regions (less than 20 amino acid regions) also predicts structure similarity of whole domains (folds) a few hundred amino acid residues long. Most of these relations could not be identified by other advanced sequence-to-sequence or sequence-to-multiple alignments comparisons. We describe the method (termed CYRCA), present examples of our findings, and discuss their implications.  相似文献   

14.
We present an original strategy, that involves a bioinformatic software structure, in order to perform an exhaustive and objective statistical analysis of three-dimensional structures of proteins. We establish the relationship between multiple sequences alignments and various structural features of proteins. We show that amino acids implied in disulfide bonds, salt bridges and hydrophobic interactions have been studied. Furthermore, we point out that the more variable the sequences within a multiple alignment, the more informative the multiple alignment. The results support multiple alignments usefulness for predictions of structural features.  相似文献   

15.

Background  

An efficient building block for protein structure prediction can be tripeptides. 8000 different tripeptides from a dataset of 1220 high resolution (≤ 2.0°A) structures from the Protein Data Bank (PDB) have been looked at, to determine which are structurally rigid and non-rigid. This data has been statistically analyzed, discussed and summarized. The entire data can be utilized for the building of protein structures.  相似文献   

16.
17.
Twilight zone of protein sequence alignments   总被引:38,自引:0,他引:38  
Sequence alignments unambiguously distinguish between protein pairs of similar and non-similar structure when the pairwise sequence identity is high (>40% for long alignments). The signal gets blurred in the twilight zone of 20-35% sequence identity. Here, more than a million sequence alignments were analysed between protein pairs of known structures to re-define a line distinguishing between true and false positives for low levels of similarity. Four results stood out. (i) The transition from the safe zone of sequence alignment into the twilight zone is described by an explosion of false negatives. More than 95% of all pairs detected in the twilight zone had different structures. More precisely, above a cut-off roughly corresponding to 30% sequence identity, 90% of the pairs were homologous; below 25% less than 10% were. (ii) Whether or not sequence homology implied structural identity depended crucially on the alignment length. For example, if 10 residues were similar in an alignment of length 16 (>60%), structural similarity could not be inferred. (iii) The 'more similar than identical' rule (discarding all pairs for which percentage similarity was lower than percentage identity) reduced false positives significantly. (iv) Using intermediate sequences for finding links between more distant families was almost as successful: pairs were predicted to be homologous when the respective sequence families had proteins in common. All findings are applicable to automatic database searches.  相似文献   

18.
The information required to generate a protein structure is contained in its amino acid sequence, but how three-dimensional information is mapped onto a linear sequence is still incompletely understood. Multiple structure alignments of similar protein structures have been used to investigate conserved sequence features but contradictory results have been obtained, due, in large part, to the absence of subjective criteria to be used in the construction of sequence profiles and in the quantitative comparison of alignment results. Here, we report a new procedure for multiple structure alignment and use it to construct structure-based sequence profiles for similar proteins. The definition of "similar" is based on the structural alignment procedure and on the protein structural distance (PSD) described in paper I of this series, which offers an objective measure for protein structure relationships. Our approach is tested in two well-studied groups of proteins; serine proteases and Ig-like proteins. It is demonstrated that the quality of a sequence profile generated by a multiple structure alignment is quite sensitive to the PSD used as a threshold for the inclusion of proteins in the alignment. Specifically, if the proteins included in the aligned set are too distant in structure from one another, there will be a dilution of information and patterns that are relevant to a subset of the proteins are likely to be lost.In order to understand better how the same three-dimensional information can be encoded in seemingly unrelated sequences, structure-based sequence profiles are constructed for subsets of proteins belonging to nine superfolds. We identify patterns of relatively conserved residues in each subset of proteins. It is demonstrated that the most conserved residues are generally located in the regions where tertiary interactions occur and that are relatively conserved in structure. Nevertheless, the conservation patterns are relatively weak in all cases studied, indicating that structure-determining factors that do not require a particular sequential arrangement of amino acids, such as secondary structure propensities and hydrophobic interactions, are important in encoding protein fold information. In general, we find that similar structures can fold without having a set of highly conserved residue clusters or a well-conserved sequence profile; indeed, in some cases there is no apparent conservation pattern common to structures with the same fold. Thus, when a group of proteins exhibits a common and well-defined sequence pattern, it is more likely that these sequences have a close evolutionary relationship rather than the similarities having arisen from the structural requirements of a given fold.  相似文献   

19.
A major problem in sequence alignments based on the standard dynamic programming method is that the optimal path does not necessarily yield the best equivalencing of residues assessed by structural or functional criteria. An algorithm is presented that finds suboptimal alignments of protein sequences by a simple modification to the standard dynamic programming method. The standard pairwise weight matrix elements are modified in order to penalize, but not eliminate, the equivalencing of residues obtained from previous alignments. The algorithm thereby yields a limited set of alternate alignments that can differ considerably from the optimal. The approach is benchmarked on the alignments of immunoglobulin domains. Without a prior knowledge of the optimal choice of gap penalty, one of the suboptimal alignments is shown to be more accurate than the optimal.  相似文献   

20.
Nuss JE  Sweeney DJ  Alter GM 《Biochemistry》2006,45(32):9804-9818
Replication protein A (RPA) is an essential heterotrimeric ssDNA binding protein that participates in DNA repair, replication, and recombination. Though X-ray and NMR experiments have been used to determine three-dimensional structure models of the protein's domain fragments, a complete RPA structural model has not been reported. To test whether the fragment structures faithfully represent the same portions in the native solution-state protein, we have examined the structure of RPA under biologically relevant conditions. We have probed the location of multiple amino acids within the native RPA three-dimensional structure using reactivity of these amino acids toward proteolytic and chemical modification reagents. In turn, we evaluated different structural models by comparing the observed native RPA reactivities with anticipated reactivities based on candidate structural models. Our results show that our reactivity analysis approach is capable of critically assessing structure models and can be a basis for selecting the most relevant from among alternate models of a protein structure. Using this analytical approach, we verified the relevance of RPA fragment models to the native protein structure. Our results further indicate several important features of native RPA's structure in solution, such as flexibility at specific locations in RPA, particularly in the C-terminal region of RPA70. Our findings are consistent with reported DNA-free structural models and support the role of conformational change in the ssDNA binding mechanism of RPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号