首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
The microenvironment of the CNS has been considered to tonically inhibit glial activities. It has been shown that glia become activated where neuronal death occurs in the aging brain. We have previously demonstrated that neurons tonically inhibit glial activities including their responses to the bacterial endotoxin lipopolysaccharide (LPS). It is not clear whether activation of glia, especially microglia in the aging brain, is the consequence of disinhibition due to neuronal death. This study was designed to determine if glia regain their responsiveness to LPS once the neurons have died in aged cultures. When cultured alone, glia from postnatal day one rat mesencephalons stimulated with LPS (0.1-1000 ng/mL) produced both nitric oxide (NO) and tumor necrosis factor alpha (TNFalpha), yielding a sigmoid and a bell-shaped curve, respectively. When neuron-containing cultures were prepared from embryonic day 14/15 mesencephalons, the shape of the dose-response curve for NO was monotonic and the bell-shaped curve for TNFalpha production was shifted to the right. After 1 month of culture under conditions where neurons die, the production curves for NO and TNFalpha in LPS-stimulated glia shifted back to the left compared to mixed neuron-glia cultures. Immunostaining of rat microglia for the marker CR3 (the receptor for complement component C3) demonstrated that high concentrations of LPS (1 microg/mL) reduced the number of microglia in mixed-glial cultures. In contrast, reduction of CR3 immunostaining was not observed in LPS-stimulated mixed neuron-glia cultures. Taken together, the results demonstrate that disinhibition of the glial response to LPS occurs after neurons die in aged cultures. Once neurons have died, the responsiveness of glia to LPS is restored. Neurons prevented injury to microglia by reducing their responsiveness to LPS. This study broadens our understanding of the ways in which the CNS microenvironment affects cerebral inflammation.  相似文献   

2.
Microglia: phagocyte and glia cell   总被引:10,自引:0,他引:10  
Microglia are the resident immune cells of the brain, and are located within the brain parenchyme behind the blood-brain barrier. They originate from mesodermal hemapoietic precursors and are slowly turned over and replenished by proliferation in the adult central nervous system. In the healthy brain resting, ramified microglia function as supportive glia cells, and their activation status is regulated by neurons through soluble mediators and cell-cell contact. However, in response to brain pathology microglia become activated: acquisition of innate immune cell functions render microglia competent to react towards brain injury through tissue repair or induction of immune responses. In certain pathological conditions, however, microglia activation may sustain a chronic inflammation of the brain, leading to neuronal dysfunction and cell death. This might be mediated by the microglial release of extracellular toxic reactive oxygen and nitrogen species. Nevertheless, in the future microglia may potentially be harnessed for therapeutical purposes.  相似文献   

3.
Microglia are resident brain macrophages, which can cause neuronal loss when activated in infectious, ischemic, traumatic, and neurodegenerative diseases. Caspase-8 has both prodeath and prosurvival roles, mediating apoptosis and/or preventing RIPK1-mediated necroptosis depending on cell type and stimulus. We found that inflammatory stimuli (LPS, lipoteichoic acid, or TNF-α) caused an increase in caspase-8 IETDase activity in primary rat microglia without inducing apoptosis. Inhibition of caspase-8 with either Z-VAD-fmk or IETD-fmk resulted in necrosis of activated microglia. Inhibition of caspases with Z-VAD-fmk did not kill non-activated microglia, or astrocytes and neurons in any condition. Necrostatin-1, a specific inhibitor of RIPK1, prevented microglial caspase inhibition-induced death, indicating death was by necroptosis. In mixed cerebellar cultures of primary neurons, astrocytes, and microglia, LPS induced neuronal loss that was prevented by inhibition of caspase-8 (resulting in microglial necroptosis), and neuronal death was restored by rescue of microglia with necrostatin-1. We conclude that the activation of caspase-8 in inflamed microglia prevents their death by necroptosis, and thus, caspase-8 inhibitors may protect neurons in the inflamed brain by selectively killing activated microglia.  相似文献   

4.
In intracerebral hemorrhage, microglia become rapidly activated and remove the deposited blood and cellular debris. To survive in a harmful hemorrhagic or posthemorrhagic condition, activated microglia must be equipped with appropriate self-defensive mechanism(s) to resist the toxicity of hemin, a component released from damaged RBCs. In the current study, we found that activation of microglia by pretreatment with LPS markedly reduced their vulnerability to hemin toxicity in vitro. Similarly, intracorpus callosum microinjection of LPS prior to hemin treatment reduced the brain tissue damage caused by hemin and increased microglial density in the penumbra in rats. LPS induced the expressions of inducible NO synthase (iNOS) and heme oxygenase (HO)-1, the rate-limiting enzyme in heme degradation in microglia. The preventive effect by LPS was significantly diminished by an iNOS inhibitor, L-N(6)-(1-iminoethyl)lysine, whereas it was mimicked by a NO donor, diethylamine-NONOate, both suggesting the crucial role of NO in the modulation of hemin-induced toxicity in activated microglia. We further found that NO reduced hemin toxicity via inhibition of hemin-induced activation of JNK and p38 MAPK pathways in microglia. Whereas HO-1 expression in LPS-stimulated microglia was markedly blocked by L-N(6)-(1-iminoethyl)lysine, the HO-1 inhibitor, tin protoporphyrin, increased iNOS expression and decreased the susceptibility of LPS-activated microglia to hemin toxicity. The data indicate that the mutual interaction between NO and HO-1 plays a critical role in modulating the adaptive response of activated microglia to hemin toxicity. Better understanding of the survival mechanism of activated microglia may provide a therapeutic strategy to attenuate the devastating intracerebral hemorrhagic injury.  相似文献   

5.
Overexposure to manganese is known to cause damage to basal ganglial neurons and the development of movement abnormalities. Activation of microglia and astrocytes has increasingly been associated with the pathogenesis of a variety of neurological disorders. We have recently shown that microglial activation facilitates manganese chloride (MnCl2, 10–300 μM)‐induced preferential degeneration of dopamine (DA) neurons. In this study, we report that combinations of MnCl2 (1–30 μM) and endotoxin lipopolysaccharide (LPS, 0.5–2 ng/mL), at minimally effective concentrations when used alone, induced synergistic and preferential damage to DA neurons in rat primary neuron‐glia cultures. Mechanistically, MnCl2 significantly potentiated LPS‐induced release of tumor necrosis factor‐alpha and interleukin‐1 beta in microglia, but not in astroglia. MnCl2 and LPS were more effective in inducing the formation of reactive oxygen species and nitric oxide in microglia than in astroglia. Furthermore, MnCl2 and LPS‐induced free radical generation, cytokine release, and DA neurotoxicity was significantly attenuated by pre‐treatment with potential anti‐inflammatory agents minocycline and naloxone. These results demonstrate that the combination of manganese overexposure and neuroinflammation is preferentially deleterious to DA neurons. Moreover, these findings not only shed light on the understanding of manganese neurotoxicity but may also bear relevance to the potentially multifactorial etiology of Parkinson’s disease.  相似文献   

6.
The brain is a common metastatic site for various types of cancers, especially lung cancer. Patients with brain metastases have a poor prognosis in spite of radiotherapy and/or chemotherapy. It is postulated that immune cells in the brain may play a major role in cancer metastasis, dormancy, and relapse. Although microglia may serve as a major component in the brain immune system, the interaction between metastatic cancer cells and microglia is still largely unknown and remains to be elucidated. In this study, we have investigated microglial reactions in brain tissues with metastatic lung cancer cells and evaluated the cytotoxic effects of lipopolysaccharide (LPS)-activated microglia on metastatic lung cancer cells in vitro. In the vicinity of metastatic lung cancer mass in the brain, microglia showed signs of significant activation. There was an obvious increase in the number of microglia labeled with ionized calcium binding adaptor molecule 1 (Iba-1) antibody, a specific marker of microglia. The microglia were observed to form a clear boundary between the tumor mass and normal brain tissue. In the region where the tumor mass was situated, only a few microglia expressed inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha), indicating differential activation in those microglia. The supernatant from LPS-activated microglia induced apoptosis of metastatic lung cancer cells in vitro in a dose- and time-dependent manner. However, at lower concentrations of activated microglial supernatant, trophic effects on cancer cells were observed, some lung cancer cells being insensitive to microglial cytotoxicity. Together with the observation that TNF-alpha alone induced proliferation of the tumor cells, the findings provide possible clues to the mechanism involved in metastasis of lung cancer cells to the brain.  相似文献   

7.
Cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) are produced by leukocytes and play a role in immune responses. They also function in normal brain physiology as well as in pathological conditions within the central nervous system, where they are produced by brain macrophages (microglia) and brain astrocytes. In this study, we document the ability of human immunodeficiency virus type 1 (HIV-1) to induce TNF alpha and IL-1 in primary rat brain cultures. While productive infection did not occur in these cells, it was not required for cytokine induction. Using monocyte/macrophage-tropic (JRFL) and T-cell-tropic (IIIB) strains of HIV-1, we were able to induce cytokines in both microglia and astrocytes. In addition to whole virus, recombinant envelope proteins also induced these cytokines. The induction of IL-1 and TNF alpha could be blocked by a panel of antibodies recognizing epitopes in the gp120 and gp41 areas of the envelope. Soluble recombinant CD4 did not block TNF alpha and IL-1 production. If TNF alpha and IL-1 can be induced in brain tissue by HIV-1, they may contribute to some of the neurologic disorders associated with AIDS.  相似文献   

8.
The etiology of sporadic Parkinson's disease (PD) remains unknown. Increasing evidence has suggested a role for inflammation in the brain in the pathogenesis of PD. However, it has not been clearly demonstrated whether microglial activation, the most integral part of the brain inflammatory process, will result in a delayed and progressive degeneration of dopaminergic neurons in substantia nigra, a hallmark of PD. We report here that chronic infusion of an inflammagen lipopolysaccharide at 5 ng/h for 2 weeks into rat brain triggered a rapid activation of microglia that reached a plateau in 2 weeks, followed by a delayed and gradual loss of nigral dopaminergic neurons that began at between 4 and 6 weeks and reached 70% by 10 weeks. Further investigation of the underlying mechanism of action of microglia-mediated neurotoxicity using rat mesencephalic neuron-glia cultures demonstrated that low concentrations of lipopolysaccharide (0.1-10 ng/mL)-induced microglial activation and production of neurotoxic factors preceded the progressive and selective degeneration of dopaminergic neurons. Among the factors produced by activated microglia, the NADPH oxidase-mediated release of superoxide appeared to be a predominant effector of neurodegeneration, consistent with the notion that dopaminergic neurons are particularly vulnerable to oxidative insults. This is the first report that microglial activation induced by chronic exposure to inflammagen was capable of inducing a delayed and selective degeneration of nigral dopaminergic neurons and that microglia-originated free radicals play a pivotal role in dopaminergic neurotoxicity in this inflammation-mediated model of PD.  相似文献   

9.
Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.  相似文献   

10.
11.
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.  相似文献   

12.
Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury.  相似文献   

13.
Parkinson's disease is characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra. We have previously reported that lipopolysaccharide (LPS)-induced degeneration of dopaminergic neurons is mediated by the release of proinflammatory factors from activated microglia. Here, we report the pivotal role of NADPH oxidase in inflammation-mediated neurotoxicity, where the LPS-induced loss of nigral dopaminergic neurons in vivo was significantly less pronounced in NADPH oxidase-deficient (PHOX-/-) mice when compared with control (PHOX+/+) mice. Dopaminergic neurons in primary mensencephalic neuron-glia cultures from PHOX+/+ mice were significantly more sensitive to LPS-induced neurotoxicity in vitro when compared with PHOX-/- mice. Further, PHOX+/+ neuron-glia cultures chemically depleted of microglia failed to show dopaminergic neurotoxicity with the addition of LPS. Neuron-enriched cultures from both PHOX+/+ mice and PHOX-/- mice also failed to show any direct LPS-induced dopaminergic neurotoxicity. However, the addition of PHOX+/+ microglia to neuron-enriched cultures from either strain resulted in reinstatement of LPS-induced dopaminergic neurotoxicity, supporting the role of microglia as the primary source of NADPH oxidase-generated insult and neurotoxicity. Immunostaining for F4/80 in mensencephalic neuron-glia cultures revealed that PHOX-/- microglia failed to show activated morphology at 10 h, suggesting an important role of reactive oxygen species (ROS) generated from NADPH oxidase in the early activation of microglia. LPS also failed to elicit extracellular superoxide and produced low levels of intracellular ROS in microglia-enriched cultures from PHOX-/- mice. Gene expression and release of tumor necrosis factor alpha was much lower in PHOX-/- mice than in control PHOX+/+ mice. Together, these results demonstrate the dual neurotoxic functions of microglial NADPH oxidase: 1) the production of extracellular ROS that is toxic to dopamine neurons and 2) the amplification of proinflammatory gene expression and associated neurotoxicity.  相似文献   

14.
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.  相似文献   

15.
Jana M  Jana A  Pal U  Pahan K 《Neurochemical research》2007,32(12):2015-2022
Elucidation of the underlying pathogenic mechanisms leading to apoptosis of neurons and oligodendrocytes and activation of microglia and astrocytes in different neurodegenerative and neuroinflammatory disorders remains a challenge in neuroscience. In order to overcome the challenge and find out therapeutic remedies, it is important to study live and death processes in each and every cell type of the brain. Here we present a protocol of isolating highly purified microglia, astrocytes, oligodendrocytes, and neurons, all four major cell types of the CNS, from the same human fetal brain tissue. As found in vivo, these primary neurons and oligodendroglia underwent apoptosis and cell death in response to neurodegenerative challenges. On the other hand, astroglia, and microglia, cells that do not die in neurodegenerative brains, became activated after inflammatory challenge. The availability of highly purified human brain cells will increase the possibility of developing therapies for different neurodegenerative disorders. M. Jana and A. Jana have equal contribution to the work.  相似文献   

16.
Maja Matic  Sanford R. Simon   《Cytokine》1991,3(6):576-583
Human peripheral blood monocytes secrete tumor necrosis factor (TNF) in response to stimulation with bacterial lipopolysaccharide (LPS). We have shown that isolated human monocytes pretreated with LPS for 24 h secrete lower levels of TNF on a second stimulation with LPS than monocytes that have been stimulated with a single dose of LPS either immediately after isolation or 24 h after isolation. The levels of TNF released by monocytes after the second stimulation with LPS are proportional to the LPS concentration over a range from 1 ng/mL to 10 micrograms/mL. Increasing concentrations of LPS used during the first 24-h stimulation induce greater suppression of TNF release after a second stimulation with LPS. After an initial stimulus of 10 micrograms/mL LPS, a second stimulation of monocytes even with 10 micrograms/mL LPS will result in TNF secretion similar to that of unstimulated cells. This in vitro tolerance apparently can be overcome by stimulating previously activated cells with phorbol myristate acetate. We have also shown that neither prostaglandin E2 nor dexamethasone added during the initial stimulation with LPS had an effect on the subsequent reduction in TNF release on a second stimulation of monocytes with LPS.  相似文献   

17.
Clearance of infected and apoptotic neuronal corpses during inflammatory conditions is a fundamental process to create a favorable environment for neuronal recovery. Microglia are the resident immune cells and the predominant phagocytic cells of the CNS, showing a multitude of cellular responses upon activation. Here, we investigated in functional assays how the CO generating enzyme heme oxygenase 1 (HO‐1) influences BV‐2 microglial migration, clearance of debris, and neurite outgrowth of human NT2 neurons. Stimulation of HO‐1 activity attenuated microglial migration in a scratch wound assay, and phagocytosis in a cell culture model of acute inflammation comprising lipopolysaccharide (LPS)‐activated microglia and apoptosis‐induced neurons. Application of a CO donor prevented the production of NO during LPS stimulation, and reduced microglial migration and engulfment of neuronal debris. LPS‐activated microglia inhibited neurite elongation of human neurons without requiring direct cell–cell surface contact. The inhibition of neurite outgrowth was totally reversed by application of exogenous CO or increased internal CO production through supply of the substrate hemin to HO. Our results point towards a vital cytoprotective role of HO‐1/CO signaling after microglial activation. In addition, they support a therapeutic potential of CO releasing chemical agents in the treatment of excessive inflammatory conditions in the CNS. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 854–876, 2015  相似文献   

18.
Activated microglia have been suggested to produce a cytotoxic cytokine, tumor necrosis factor alpha (TNF alpha), in many pathological brains. Thus, determining the molecular mechanism of this induction and suppression has been the focus of a great deal of research. Using lipopolysaccharide (LPS) as an experimental inducer of TNF alpha, we investigated the regulatory mechanism by which TNFalpha is induced or suppressed in microglia. We found that LPS-induced TNF alpha is suppressed by pretreatment with the p38 mitogen-activated protein kinase (p38MAPK) inhibitor SB203580. Similar suppression was achieved by pretreatment with specific protein kinase C (PKC) inhibitors, G?6976, myristoylated pseudosubstrate (20-28), and bisindolylmaleimide. These results suggest that PKC alpha activity as well as p38MAPK activity is associated with TNF alpha induction in LPS-stimulated microglia. The requirement of PKC alpha in LPS-dependent TNFalpha induction was verified in PKC alpha-downregulated microglia which could be induced by phorbol-12-myristate-13-acetate pretreatment. Simultaneously, PKC alpha was found to be requisite for the activation of p38MAPK in LPS-stimulated microglia. In addition, the PKC alpha levels in the LPS-stimulated microglia were observed to decrease in response to the p38MAPK inhibitor, indicating that the PKC alpha levels are regulated by the p38MAPK activity. We therefore concluded that PKC alpha and p38MAPK are interactively linked to the signaling cascade inducing TNFalpha in LPS-stimulated microglia, and that in this cascade, PKC alpha is requisite for the activation of p38MAPK, leading to the induction of TNF alpha.  相似文献   

19.
The innate immune receptor Toll-like 4 (TLR4) is the receptor activated by lipopolysaccharide (LPS), and TLR4-LPS interaction is well known to induce an innate immune response, triggering sickness behavior. Within the brain, TLR4 is highly expressed in brain microglia, and excessive inflammation resulting from activation of this pathway in the brain has been implicated in depressive disorders and neurodegenerative pathologies. We hypothesized that blocking LPS-induced activation of TLR4 would prevent downstream immune signaling in the brain and suppress the induction of sickness behavior. We used interfering peptides to block TLR4 activation and confirmed their efficacy in preventing second messenger activation and cytokine production normally induced by LPS treatment. Further, these peptides blocked morphological changes in microglia that are typically induced by LPS. We also demonstrated that intraperitoneal (i.p.) injection of Tat-TLR4 interfering peptides prevented LPS-induced sickness behavior, as assessed in home cage behavior and with the intracranial self-stimulation paradigm. These newly synthesised peptides inhibit TLR4 signaling thereby preventing changes in behavior and motivation caused by inflammatory stimuli. These peptides highlight the roll of TLR4 and microglia morphology changes in sickness behavior, and thus may be of therapeutic value in limiting the deleterious impact of excessive inflammation in specific CNS pathologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号