首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The simple repeating homopurine/homopyrimidine sequences dispersed throughout many eukaryotic genomes are known to form triple helical structures comprising three-stranded and single-stranded DNA. Several lines of evidence suggest that these structures influence DNA replication in cells. Homopurine/homopyrimidine sequences cloned into simian virus 40 (SV40) or SV40 origin-containing plasmids caused a reduced rate of DNA synthesis due to the pausing of replication forks. More prominent arrests were observed in in vitro experiments using single-stranded and double-stranded DNA with triplex-forming sequences. Nucleotides unable to form triplexes when present in the template DNA or when incorporated into the nascent strand prevented termination. Similarly, mutations destroying the triplex potential did not cause arrest while compensatory mutations restoring triplex potential restored it. These and other observations from a number of laboratories indicating that homopurine/homopyrimidine sequences act as arrest signals in vitro and as pause sites in vivo during replication fork movement suggest that these naturally occurring sequences play a regulatory role in DNA replication and gene amplification.  相似文献   

3.
Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures when present in the DNA template might also hinder the action of DNA polymerases. In this study, single-stranded telomeric templates with the potential to form G-quadruplexes were examined for their effects on a variety of replicative and translesion DNA polymerases from humans and lower organisms. Our results demonstrate that single-stranded templates containing four telomeric GGG runs fold into intramolecular G-quadruplex structures. These intramolecular G quadruplexes are somewhat dynamic in nature and stabilized by increasing KCl concentrations and decreasing temperatures. Furthermore, the presence of these intramolecular G-quadruplexes in the template dramatically inhibits DNA synthesis by various DNA polymerases, including the human polymerase δ employed during lagging strand replication of G-rich telomeric strands and several human translesion DNA polymerases potentially recruited to sites of replication blockage. Notably, misincorporation of nucleotides is observed when certain translesion polymerases are employed on substrates containing intramolecular G-quadruplexes, as is extension of the resulting mismatched base pairs upon dynamic unfolding of this secondary structure. These findings reveal the potential for blockage of DNA replication and genetic changes related to sequences capable of forming intramolecular G-quadruplexes.  相似文献   

4.
The ability of single-stranded DNA oligomers to form adjacent triplex and duplex domains with two DNA structural motifs was examined. Helix-coil transition curves and a gel mobility shift assay were used to characterize the interaction of single-stranded oligomers 12-20 nt in length with a DNA hairpin and with a DNA duplex that has a dangling end. The 12 nt on the 5'-ends of the oligomers could form a triplex structure with the 12 bp stem of the hairpin or the duplex portion of the DNA with a dangling end. The 3'-ends of the 17-20 nt strands could form Watson-Crick pairs to the five base loop of the hairpin or the dangling end of the duplex. Complexes of the hairpin DNA with the single-stranded oligomers showed two step transitions consistent with unwinding of the triplex strand followed by hairpin denaturation. Melting curve and gel competition results indicated that the complex of the hairpin and the 12 nt oligomer was more stable than the complexes involving the extended single strands. In contrast, results indicated that the extended single-stranded oligomers formed Watson-Crick base pairs with the dangling end of the duplex DNA and enhanced the stability of the adjacent triplex region.  相似文献   

5.
Negative superhelical strain induces the poly(dG)-poly(dC) sequence to adopt two totally different types of triple-helices, either a dG.dG.dC triplex in the presence of Mg(+)+ at both neutral and acidic pHs or a protonated dC+.dG.dC triplex in the absence of Mg(+)+ ions at acidic pH (1). To examine whether there are still other types of non-B DNA structures formed by the same sequence, we constructed supercoiled plasmid DNAs harboring varying lengths of the poly(dG) tract, and the structures adopted by each supercoiled plasmid DNA were studied with a chemical probe, chloroacetaldehyde. The potential of a poly(dG)-poly(dC) sequence to adopt non-B DNA structures depends critically on the length of the tract. Furthermore, in the presence of Mg(+)+ and at a mildly acidic pH, in addition to the expected dG.dG.dC triplex detected for the poly(dG) tracts of 14 to 30 base pairs (bp), new structures were also detected for the tracts longer than 35 bp. The structure formed by a poly(dG) tract of 45 bp revealed chemical reaction patterns consistent with a dG.dG.dC triplex and protonated dC+.dG.dC triple-helices fused together. This structure lacks single-stranded stretches typical of intramolecular triplexes.  相似文献   

6.
DNA structural transitions within the PKD1 gene.   总被引:7,自引:0,他引:7  
Autosomal dominant polycystic kidney disease (ADPKD) affects over 500 000 Americans. Eighty-five percent of these patients have mutations in the PKD1 gene. The focal nature of cyst formation has recently been attributed to innate instability in the PKD1 gene. Intron 21 of this gene contains the largest polypurine. polypyrimidine tract (2.5 kb) identified to date in the human genome. Polypurine.polypyrimidine mirror repeats form intramolecular triplexes, which may predispose the gene to mutagenesis. A recombinant plasmid containing the entire PKD1 intron 21 was analyzed by two-dimensional gel electrophoresis and it exhibited sharp structural transitions under conditions of negative supercoiling and acidic pH. The superhelical density at which the transition occurred was linearly related to pH, consistent with formation of protonated DNA structures. P1 nuclease mapping studies of a plasmid containing the entire intron 21 identified four single-stranded regions where structural transitions occurred at low superhelical densities. Two-dimensional gel electrophoresis and chemical modification studies of the plasmid containing a 46 bp mirror repeat from one of the four regions demonstrated the formation of an H-y3 triplex structure. In summary, these experiments demonstrate that a 2500 bp polypurine.polypyrimidine tract within the PKD1 gene is capable of forming multiple non-B-DNA structures.  相似文献   

7.
8.
Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix. Here we performed a comprehensive analysis on several non-canonical DNA secondary structures, namely mismatches, nicks, bulges, hairpins, with sequence variations in both the single-stranded region and the double-stranded flanking segment. By analysis of clerocidin reactivity, we were able to identify the exposed reactive residues which provided information on both the secondary structure and the accessibility of the non-paired sites. Mismatches longer than 1 base were necessary to be reached by clerocidin reactive groups, while 1-base nicks were promptly targeted by clerocidin; in hairpins, clerocidin reactivity increased with the length of the hairpin loop, while, interestingly, reactivity towards bulges reached a maximum in 3-base-long bulges and declined in longer bulges. Electrophoretic mobility shift analysis demonstrated that bulges longer than 3 bases (i.e. 5- and 7-bases) folded or stacked on the duplex region therefore being less accessible by the compound. Clerocidin thus represents a new valuable diagnostic tool to dissect DNA secondary structures.  相似文献   

9.
A family of unusual DNA structures has been discovered in segments with predominantly purines in one strand (pur.pyr sequences). These sequences are overrepresented in eukaryotic DNA and have been mapped near genes and recombination hot spots. When cloned into recombinant plasmids, many pur.pyr sequences are reactive to chemical and enzymic probes that are generally specific for single-stranded DNA. An intramolecular triplex is adopted by mirror repeats of G's and A's. Other non-B DNA structures adopted by similar sequences remain to be fully clarified but may be a family of related conformations. It is likely that these unorthodox structures play an important role in the function of the eukaryotic genome.  相似文献   

10.
11.
12.
13.
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3'-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility.  相似文献   

14.
15.
DNA replication in vertebrate mitochondria is usually directional, leaving different portions of the genome single-stranded for different periods of time. During this time, mutations resulting from deaminations of cytosines to thymines and adenines to guanines accumulate on the heavy strand. Therefore, T/C and G/A ratios increase along mitochondrial genomes, proportionally to the time spent single-stranded during replication. Such trends exist at third codon positions for base ratios averaged across genes in individual genomes as well as for gene-specific and site-specific substitution frequencies estimated using phylogenetic methods. We use multiple regressions to test for the potential functioning of all 12 tRNA clusters in 19 primate mitochondrial genomes as alternative origins of light strand replication (OL). We provide a general algorithm for calculating time spent single stranded by a given site for any possible locations of the site and OL. For codon positions 1, 2, and 3, respectively, 23%, 9% and 35% of tRNA gene clusters have significant (p < 0.05) deamination gradients originating from them. The strength of the deamination gradient originating from tRNA gene clusters varies among species, and for five clusters, correlates with the tendency of tRNA genes in each of these clusters to form secondary structures that resemble the OL's structure. This is notably true for all codon positions for tRNA-Lys, which in absence of nuclear regulation, forms secondary structures resembling the hairpin structure of OL. For two tRNA gene clusters, correlations were statistically significant, but opposite to the direction expected by the known unidirectional replication, putatively compatible with bi-directional replication. Few substitutions in tRNA sequences can be neutral at the level of cloverleaf structure and function, yet significantly alter capacities to form OL-like structures, causing sudden evolution of genome-wide nucleotide contents.  相似文献   

16.
In this study, we present the results of structural analysis of an 18-mer DNA 5'-T(1)C(2)T(3)C(4)T(5)C(6)C(7)T(8)C(9)T(10)C(11)T(12)A(13)G(14)A(15)G(16)A(17)G(18)-3' by proton nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The NMR data are consistent with characteristics for triple helical structures of DNA: downfield shifting of resonance signals, typical for the H3(+) resonances of Hoogsteen-paired cytosines; pH dependence of these H3(+) resonance; and observed nuclear Overhauser effects consistent with Hoogsteen and Watson-Crick basepairing. A three-dimensional model for the triplex is developed based on data obtained from two-dimensional NMR studies and molecular modeling. We find that this DNA forms an intramolecular "paperclip" pyrimidine-purine-pyrimidine triple helix. The central triads resemble typical Hoogsteen and Watson-Crick basepairing. The triads at each end region can be viewed as hairpin turns stabilized by a third base. One of these turns is comprised of a hairpin turn in the Watson-Crick basepairing portion of the 18-mer with the third base coming from the Hoogsteen pairing strand. The other turn is comprised of two bases from the continuous pyrimidine portion of the 18-mer, stabilized by a hydrogen-bond from a purine. This "triad" has well defined structure as indicated by the number of nuclear Overhauser effects and is shown to play a critical role in stabilizing triplex formation of the internal triads.  相似文献   

17.
18.
To know the nature and mechanisms of spontaneous mutations in mitochondrial DNA (mtDNA), we determined, by direct cycle sequencing, the nucleotide sequence of the 3' terminal region of the mitochondrial 16S rRNA gene from chloramphenicol-resistant (CAP-R) mutants isolated in Chinese hamster V79 cells. Four different base substitutions were identified in common for the six CAP-R mutants. All mutations were heteroplasmic. One A to G transition was mapped at a site within the putative peptidyl transferase domain, the target region for chloramphenicol, and one G to A transition and two T to G transversions were located within the two different segments which form the stems of the hairpin loop structures attached to this key domain in the predicted secondary structure of 16S rRNA. The mutations detected in this study do not map to the same sites where CAP-R mutations were found previously in mammalian cells. Allele specific-PCR analyses revealed that all four mutations occurred on a single mutant-DNA molecule, but not on several ones independently. Together with the other previous reports, our data suggest that spontaneous mtDNA mutations may not be caused exclusively by oxidative DNA damage at least in 16S rRNA gene.  相似文献   

19.
The onset and progress of Friedreich's ataxia (FRDA) is associated with the genetic instability of the (GAA).(TTC) trinucleotide repeats located within the frataxin gene. The instability of these repeats may involve the formation of an alternative DNA structure. Poly-purine (R)/poly-pyrimidine (Y) sequences typically form triplex DNA structures which may contribute to genetic instability. Conventional wisdom suggested that triplex structures formed by these poly-purine (R)/poly-pyrimidine (Y) sequences may contribute to their genetic instability. Here, we report the characterization of the single-stranded GAA and TTC sequences and their mixtures using NMR, UV-melting, and gel electrophoresis, as well as chemical and enzymatic probing methods. We show that the FRDA GAA/TTC, repeats are capable of forming various alternative structures. The most intriguing is the observation of a parallel (GAA).(TTC) duplex in equilibrium with the antiparallel Watson-Crick (GAA).(TTC) duplex. We also show that the GAA strands form self-assembled structures, whereas the TTC strands are essentially unstructured. Finally, we demonstrate that the FRDA repeats form only the YRY triplex (but not the RRY triplex) at neutral pH and the complete formation of the YRY triplex requires the ratio of GAA to TTC strand larger than 1:2. The structural features presented here and in other studies distinguish the FRDA (GAA)?(TTC) repeats from the fragile X (CGG).CCG), myotonic dystrophy (CTG).(CAG) and the Huntington (CAG).(CTG) repeats.  相似文献   

20.
The pausing of DNA replication has been used as a tool for analyzing secondary structures in a single-stranded DNA. M13mp8 (+) single-stranded DNA was replicated in vitro by the DNA polymerase alpha from calf thymus. The positions of pausing were determined from DNA sequencing gels. All experimentally observed pausing sites could be correlated with computer-predicted secondary structures of the M13 single-stranded DNA. In the computer calculations of the secondary structures, long-range base-pairing, G.T mispairs and loop-out of bases were allowed. By using six different primers, the pausing site pattern and the corresponding secondary structure map of a region comprising 1400 nucleotides of the M13 genome has been established. Our experiments indicate that the M13 DNA is highly structured. Most of the stable structures are clustered around the origin of replication. With fragments of the M13 DNA, we show that long-range base-pairing exists in the M13 single-stranded genome and we present evidence for tertiary structure interactions. Furthermore we observe structures that form newly during the course of replication. The Escherichia coli single-stranded DNA-binding protein facilitates replication through the barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号