首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A virus concentration method using a cation-coated filter was developed for large-volume freshwater applications. Poliovirus type 1 (LSc 2ab Sabin strain) inoculated into 40 ml of MilliQ (ultrapure) water was adsorbed effectively to a negatively charged filter (Millipore HA, 0.45- micro m pore size) coated with aluminum ions, 99% (range, 81 to 114%) of which were recovered by elution with 1.0 mM NaOH (pH 10.8) following an acid rinse with 0.5 mM H(2)SO(4) (pH 3.0). More than 80% poliovirus recovery yields were obtained from 500-ml, 1,000-ml, and 10-liter MilliQ water samples and from tap water samples. This method, followed by TaqMan PCR detection, was applied to determine the presence of noroviruses in tap water in Tokyo, Japan. In a 14-month survey, 4 (4.1%) and 7 (7.1%) of 98 tap water samples (100 to 532 liters) contained a detectable amount of noroviruses of genotype 1 and genotype 2, respectively. This method was proved to be useful for surveying the occurrence of enteric viruses, including noroviruses, in large volumes of freshwater.  相似文献   

2.
3.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

4.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

5.
6.
To determine whether suspended solids interfere with enteric virus recovery from water by microporous filter methods, the effects of bentonite clay solids at a concentration of 10 nephelometric turbidity units on the recovery of poliovirus type 1 from seeded, activated carbon-treated, filtered tap water were studied. Volumes (500 ml) of virus-laden water at pH 5.5 or 7.5, with and without 50 mM MgCl2, were filtered through 47-mm-diameter, electropositive (Virosorb 1MDS) and electronegative (Filterite) filters that had been pretreated with Tween 80 to minimize direct virus adsorption to filter surfaces. Bentonite solids enhanced virus retention on both types of filters, even under conditions in which viruses were not solids associated. However, bentonite solids also interfered with elution of retained viruses when eluting with 0.3% beef extract-50 mM glycine (pH 9.5). Under some conditions, overall virus recoveries were lower from water with bentonite solids than from solids-free control water. The results of this study indicate that clay turbidity can interfere somewhat with virus recovery by current microporous filter methods.  相似文献   

7.
To determine whether suspended solids interfere with enteric virus recovery from water by microporous filter methods, the effects of bentonite clay solids at a concentration of 10 nephelometric turbidity units on the recovery of poliovirus type 1 from seeded, activated carbon-treated, filtered tap water were studied. Volumes (500 ml) of virus-laden water at pH 5.5 or 7.5, with and without 50 mM MgCl2, were filtered through 47-mm-diameter, electropositive (Virosorb 1MDS) and electronegative (Filterite) filters that had been pretreated with Tween 80 to minimize direct virus adsorption to filter surfaces. Bentonite solids enhanced virus retention on both types of filters, even under conditions in which viruses were not solids associated. However, bentonite solids also interfered with elution of retained viruses when eluting with 0.3% beef extract-50 mM glycine (pH 9.5). Under some conditions, overall virus recoveries were lower from water with bentonite solids than from solids-free control water. The results of this study indicate that clay turbidity can interfere somewhat with virus recovery by current microporous filter methods.  相似文献   

8.
Discharge of raw domestic wastes containing human enteric viruses into water courses, consumption of untreated water from canals, streams, and shallow wells in villages, and cross-contamination of water in the distribution system because of intermittent water supply in urban areas continue to cause widespread outbreaks of infectious hepatitis in India. To detect a low number of viruses in 50- to 100-liter samples of water, a method was developed with magnetic iron oxide as the virus adsorbent. Poliovirus-seeded dechlorinated tap water, adjusted to pH 3.0 and 0.0005 M AlCl3, was filtered through a 10-g bed of iron oxide sandwiched between two AP20 prefilter pads held in a 142-mm-diameter, stainless-steel holder. Virus was eluted from iron oxide by recirculating three times a 100-ml volume of 3% beef extract, pH 9.0. The eluate was reconcentrated to 5 ml by adjusting to pH 3, adding 1 g of iron oxide, stirring for 30 min, and eluting the readsorbed virus with 5 ml of beef extract, pH 9.0. Virus recovery varied from 60 to 80%. Using the above method, we took a survey of drinking water at three locations in Nagpur during 1976 and found the presence of virus in 7 of 50 samples. The quantity of virus recovered ranged from 1 to 7 plaque-forming units per 30 to 60 liters. Virus was detected in some samples even with residual chlorine. No coliforms were detected in the virus-positive samples.  相似文献   

9.
The occurrence of human enteric viruses in surface water in the Tamagawa River, Japan, was surveyed for 1 year, from April 2003 to March 2004. Sixty-four samples were collected from six sites along the river, and 500 ml of the sample was concentrated using the cation-coated filter method, which was developed in our previous study. This method showed recovery yields of 56% ± 32% (n = 37) for surface water samples inoculated with polioviruses. More than one kind of tested virus was detected in 43 (67%) of 64 samples by TaqMan PCR. Noroviruses and adenoviruses were detected in a high positive ratio; 34 (53%), 28 (44%), and 29 (45%) of 64 samples were positive for norovirus genotype 1 and genotype 2 and adenoviruses, respectively. The mean concentrations of norovirus genotype 1 or genotype 2 determined by real-time PCR were 0.087 and 0.61 genome/ml, respectively, showing much higher values in winter (0.21 genome/ml for genotype 1 and 2.3 genomes/ml for genotype 2). Enteroviruses were detected by both direct PCR (6 of 64 samples; 9%) and cell culture PCR (2 of 64 samples; 3%). Torque teno viruses, emerging hepatitis viruses, were also isolated in three samples (5%). The concentration of total coliforms and the presence of F-specific phages showed a high correlation with the presence of viruses, which suggested that the simultaneous use of total coliforms and F-specific phages as indicators of surface water may work to monitor viral contamination.  相似文献   

10.
The occurrence of human enteric viruses in surface water in the Tamagawa River, Japan, was surveyed for 1 year, from April 2003 to March 2004. Sixty-four samples were collected from six sites along the river, and 500 ml of the sample was concentrated using the cation-coated filter method, which was developed in our previous study. This method showed recovery yields of 56% +/- 32% (n = 37) for surface water samples inoculated with polioviruses. More than one kind of tested virus was detected in 43 (67%) of 64 samples by TaqMan PCR. Noroviruses and adenoviruses were detected in a high positive ratio; 34 (53%), 28 (44%), and 29 (45%) of 64 samples were positive for norovirus genotype 1 and genotype 2 and adenoviruses, respectively. The mean concentrations of norovirus genotype 1 or genotype 2 determined by real-time PCR were 0.087 and 0.61 genome/ml, respectively, showing much higher values in winter (0.21 genome/ml for genotype 1 and 2.3 genomes/ml for genotype 2). Enteroviruses were detected by both direct PCR (6 of 64 samples; 9%) and cell culture PCR (2 of 64 samples; 3%). Torque teno viruses, emerging hepatitis viruses, were also isolated in three samples (5%). The concentration of total coliforms and the presence of F-specific phages showed a high correlation with the presence of viruses, which suggested that the simultaneous use of total coliforms and F-specific phages as indicators of surface water may work to monitor viral contamination.  相似文献   

11.
A microbial method to determine sulphate concentration in water was developed on the basis of sulphate-dependent acid phosphatase (APase) in whole cells of Thiobacillus thiooxidans. The activity of the APase was determined colorimetrically by using p-nitrophenylphosphate as substrate. The APase was activated by sulphate. A linear relationship was obtained between the activity of the APase and the concentration of sulphate in the range 0–0.6 mM. Therefore, the sulphate concentration was estimated from the APase activity, represented by the absorbance (A 400). The microbial method was applied to the determination sulphate in water. The lower limit of detection was 0.02 mM, the relative standard deviation being 2% for 10 measurements on a standard sample. As for practical samples, which were taken from rain, river and tap water, good agreement was obtained between the values measured by the microbial method and those given by a conventional barium chloranilate method. The relative standard deviation was 2.1% for 12 measurements of tap water. The activity of the APase was stable over a period of more than 100 days when the cells were stored in 0.1 M sodium acetate/acetic acid buffer (pH 5.0) at 4 °C. Received: 21 March 1997 / Received revision: 30 June 1997 / Accepted: 27 July 1997  相似文献   

12.
Human noroviruses (NoV) were quantified and characterized in an 18 month survey conducted along the Llobregat river catchment in Spain. Sample types included freshwater, untreated and treated wastewater and drinking water. High NoV genome copy numbers were reported, reaching up to 10(6) l(-1) and 10(9) l(-1) in freshwater and raw sewage respectively. In both types of samples, GII NoV genome copies outnumbered those of GI, although without significance. All samples of semi-treated and treated drinking water were negative for NoV. A clear seasonality of NoV occurrence was observed both in river water and sewage samples, with significantly higher genome copy numbers in the cold than in the warm months period. Mean NoV log reduction rates after biological treatment of sewage were 2.2 and 3.1 for GI and GII respectively. A total of 77 NoV strains isolated in the Llobregat river catchment could be phylogenetically characterized, 44 belonging to GI and 33 to GII. The most prevalent genotype was GI.4, followed by GII.4 and GII.21. Several variants of the pandemic GII.4 strain were detected in the environment, corroborating their circulation among the population.  相似文献   

13.
J F Ma  J Naranjo    C P Gerba 《Applied microbiology》1994,60(6):1974-1977
The MK filter is an electropositively charged filter that can be used to concentrate enteroviruses from large volumes (400 to 1,000 liters) of water. This filter is less expensive than the commonly used 1MDS electropositive filter. In this study, we compared the recovery of poliovirus 1 (PV1) and that of coxsackievirus B3 (CB3) from 378 liters of tap water, using both the MK and the 1MDS filters. Viruses were eluted from the filters with 3% beef extract buffered with 0.05 M glycine (pH 9.5) and reconcentrated via organic flocculation. At high virus inputs (approximately 10(6) PFU), the overall recovery (after elution and reconcentration) of PV1 and CB3 from tap water with the MK filter was less than that achieved with the 1MDS filter (P < 0.05). The recoveries of PV1 from tap water with the MK and 1MDS filters were 73.2% +/- 26% (n = 5 trials) and 90.2% +/- 5.9% (n = 5 trials), respectively. The recoveries of CB3 from tap water with the MK and 1MDS filters were 32.8% +/- 34.5% (n = 4 trials) and 95.8% +/- 12.0% (n = 4 trials), respectively. This study indicated that the MK filter consistently provided lower recovery, with wider variability, of PV1 and CB3 from tap water than the 1MDS filter.  相似文献   

14.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

15.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

16.
A novel filter system comprising open cell reticulated foam rings compressed between retaining plates and fitted into a filtration housing was evaluated for the recovery of oocysts of Cryptosporidium from water. Mean recoveries of 90·2% from seeded small and large volume (100–2000 l) tap water samples, and 88·8% from 10–20 l river water samples, were achieved. Following a simple potassium citrate flotation concentrate clean-up procedure, mean recoveries were 56·7% for the tap water samples and 60·9% for river water samples. This represents a marked improvement in capture and recovery of Cryptosporidium oocysts from water compared with conventional polypropylene wound cartridge filters and membrane filters.  相似文献   

17.
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

18.
EPA Method 1615 was developed with a goal of providing a standard method for measuring enteroviruses and noroviruses in environmental and drinking waters. The standardized sampling component of the method concentrates viruses that may be present in water by passage of a minimum specified volume of water through an electropositive cartridge filter. The minimum specified volumes for surface and finished/ground water are 300 L and 1,500 L, respectively. A major method limitation is the tendency for the filters to clog before meeting the sample volume requirement. Studies using two different, but equivalent, cartridge filter options showed that filter clogging was a problem with 10% of the samples with one of the filter types compared to 6% with the other filter type. Clogging tends to increase with turbidity, but cannot be predicted based on turbidity measurements only. From a cost standpoint one of the filter options is preferable over the other, but the water quality and experience with the water system to be sampled should be taken into consideration in making filter selections.  相似文献   

19.
Poliovirus concentration from tap water with electropositive adsorbent filters   总被引:10,自引:0,他引:10  
Simple, reliable, and efficient concentration of poliovirus from tap water was obtained with two types of electropositive filter media, one of which is available in the form of a pleated cartridge filter (Virozorb 1MDS). Virus adsorption from tap water between pH 3.5 and 7.5 was more efficient with electropositive filters than with Filterite filters. Elution of adsorbed viruses was more efficient with beef extract in glycine, pH 9.5, than with glycine-NaOH, pH 11.0. In paired comparative studies, electropositive filters, with adsorption at pH 7.5 and no added polyvalent cation salts, gave less variable virus concentration efficiencies than did Filterite filters with adsorption at pH 3.5 plus added MgCl2. Recovery of poliovirus from 1,000-liter tap water volumes was approximately 30% efficient with both Virozorb 1MDS and Filterite pleated cartridge filters, but the former were much simpler to use. The virus adsorption behavior of these filters appears to be related to their surface charge properties, with more electropositive filters giving more efficient virus adsorption from tap water at higher pH levels.  相似文献   

20.
The survival of Clavibacter michiganensis subsp. sepedonicus (Cms), the causal organism of bacterial ring rot in potato, was studied in water, to assess the risks for dissemination of Cms via surface water and infection of potato crops by irrigation. Cms was able to survive for a maximum period of 7 days in non‐sterile surface water at 10°C, a period during which Cms can be transported over long distances, but will also be strongly diluted. It is concluded that contamination of surface water with Cms can pose a threat on potato production only if aquatic host plants can multiply Cms in high densities. Survival of a fluidal and non‐mucoid strain was also studied in sterile ditch water and simulated ‘drainage water’, in sterile MilliQ water, in tap water, in physiological salt and in artificial xylem fluid. In addition, the influence of temperature and low oxygen conditions on persistence of Cms in some of these diluents was studied. A maximum survival period of 35 days was found for Cms in sterile tap water at 20°C, independent of the strain used. In the other diluents survival periods ranged between 0 and 21 days. Relatively poor survival was found in MilliQ water and artificial xylem fluid. Low temperatures of 4°C do not favour survival as it does in soil. Oxygen depletion affected survival detrimentally. Survival periods determined by agar dilution plating and a direct viable counting method, based on the use of indicators for esterase activity and membrane integrity were similar. Therefore, it was concluded that under the experimental conditions studied, Cms did not form cells in a viable but non‐culturable state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号