首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sponges mediate consolidation of Porites furcata rubble on shallow Caribbean reefs by quickly adhering to rubble and stabilizing it until carbonate secreting organisms can grow and consolidate it to the reef. Experimental investigations demonstrate that the entire cycle from (1) temporary binding of rubble by sponges, through (2) rubble consolidation by encrusting coralline algae, to (3) colonization of consolidated rubble by corals, can be completed within 10 months. Bound rubble both adds to vertical reef growth and also provides stable substrata for colonization by corals. Corals that colonize stabilized rubble are damaged less and survive better than on unstable rubble. Rubble that is not temporarily stabilized by sponges does not become bound to the reef, because continuous movement disturbs the consolidation process, and does not provide suitable substrata for settlement and growth of corals. Sponge-mediated consolidation of rubble may increase rates of reef growth and enhance reef recovery after damage. This new role for sponges in reef growth is not obvious from examination of the internal fabric of a reef frame. Spongemediated consolidation may help to explain geographic and temporal differences in growth and morphology among shallow reefs of ramose corals.  相似文献   

3.
 In recent years, marine scientists have become increasingly alarmed over the decline of live coral cover throughout the Caribbean and tropical western Atlantic region. The Holocene and Pleistocene fossil record of coral reefs from this region potentially provides a wealth of long-term ecologic information with which to assess the historical record of changes in shallow water coral reef communities. Before fossil data can be applied to the modern reef system, critical problems involving fossil preservation must be addressed. Moreover, it must be demonstrated that the classic reef coral zonation patterns described in the early days of coral reef ecology, and upon which “healthy” versus “unhealthy” reefs are determined, are themselves representative of reefs that existed prior to any human influence. To address these issues, we have conducted systematic censuses of life and death assemblages on modern “healthy” patch reefs in the Florida reef tract that conform to the classic Caribbean model of reef coral zonation, and a patch reef in the Bahamas that is currently undergoing a transition in coral dominance that is part of a greater Caribbean-wide phenomenon. Results were compared to censuses of ancient reef assemblages preserved in Pleistocene limestones in close proximity to each modern reef. We have determined that the Pleistocene fossil record of coral reefs may be used to calibrate an ecological baseline with which to compare modern reef assemblages, and suggest that the current and rapid decline of Acropora cervicornis observed on a Bahamian patch reef may be a unique event that contrasts with the long-term persistence of this taxon during Pleistocene and Holocene time. Accepted: 19 May 1998  相似文献   

4.
Relatively little is known about how the future effects of climatic change, including increases in sea level, temperature and storm severity and frequency, will impact on patterns of biodiversity on coral reefs, with the notable exception of recent work on corals and fish in tropical reef ecosystems. Sessile invertebrates such as ascidians, sponges and bryozoans occupying intertidal rubble habitats on coral reefs contribute significantly to the overall biodiversity and ecosystem function, but there is little or no information available on the likely impacts on these species from climate change. The existing strong physical gradients in these intertidal habitats will be exacerbated under predicted climatic change. By examining the distribution and abundance of nonscleractinian, sessile invertebrate assemblages exposed to different levels of wave action and at different heights on the shore around a coral reef, we show that coral reef intertidal biodiversity is particularly sensitive to physical disturbance. As physical disturbance regimes increase due to more intense storms and wave action associated with global warming, we can expect to see a corresponding decrease in the diversity of these cryptic sessile assemblages. This could impact negatively on the future health and productivity of coral reef ecosystems, given the ecosystem services these organisms provide.  相似文献   

5.
The Cambrian Series 3 Zhangxia Formation in Shandong Province, North China, includes small‐scale lithistid sponge–microbial reefs. The lithistid sponges grew on oolitic and bioclastic sediments, which were stabilized by microbial activities. The relative abundances of microbial components (e.g. calcimicrobe Epiphyton and stromatolites) vary among the reefs. However, the microbial components commonly encrusted or bound the lithistid sponges, formed remarkable encrustations on the surfaces of the sponges. Epiphyton especially grew upward and downward. The lithistid sponges thus provided substrates for the attachment and development of microbes, and the microbes played essential roles as consolidators, by encrusting reef‐building sponges. Additionally, the lithistid sponges were prone to degradation via microbial activities and diagenetic processes, and were thus preserved as micritic bodies, showing faint spicular networks or abundant spicules. Such low preservation potential within the reef environment obscured the presence of the sponges and their widespread contribution as reef‐building organisms during the Cambrian. During the prolonged interval after the demise of archaeocyaths, purely microbial reefs, such as stromatolites and thrombolites have been considered to be the principal reef builders, in association with rare lithistid sponge–microbial associations. However, recent findings, including those from Shandong Province and Korea, suggest that the lithistid sponge‐bearing reefs were more extensive during the Epoch 3 to the Furongian than previously thought. These lithistid sponge–microbial reefs were precursors of the sponge–microbial reefs that dominated worldwide in the Early Ordovician.  相似文献   

6.
Summary Analyses of large acatate sheet tracings, close-up photos and 105 sub-horizontal quadrat surfaces at four localities near the base of the Guadalupe Mountains Escarpment indicate that the biotic framework of the upper Capitan reef was built by about 35 species: one codiacean (Eugonophyllum sp.), 17 calcisponges, 9 bryozoans, one richthofenid brachipod, some crinoid (known only from columns), 4 Problematica and microbes. This widespread fossil community included members of the Constructor, Baffler and Binder Guilds. A re-evaluation of the Guild Concept (Fagerstrom, 1987, 1991) highlights the validity of the functional roles of the Constructor and Binder Guilds for reef construction. Members of the Baffler Guild, however, need to be revised and an interpretation of microbial micrite and cryptic biota remains controversial. Open surface phylloid algal and cryptic sponge-bryozoan dominated sub-communities were of only local importance. The upper Capitanmassive differs from its Permian conterparts in the low diversity and areal cover of the frame-building biota, low micrite content and abundant micro-frameworks, i.e, intergrown small sponges, Problematica and syndepositional cements (botryoidal and isopachous, fibrous calcite). Quantitative areal cover data were assessed at various scales. Large acetate sheets generally have low coverage of macro-biota (5.4%). By contrast, analysis of small areas of local high areal cover (selected acetate sheet quadrats, subvertical photographs, and quadrat samples: 15–21%) provide detailed insights into clustered patches forming the inital reef framework. Both data sets provide useful clues for an integrated approach to framework assessment. Mean acetate sheet data are limited by their somewhat generalized pattern, while small investigation areas may overemphasize local variation. Erect and pendant sponges with solitary, sub-cylindrical and multi-branche/clonal forms, were the predominant initial frame-builders in both open surface and cryptic habitats. Selective larval recruitment of erects sponges to firm substrates produced continous upward accretion of the initial framework. On open surfaces and in pores formed by tabular sponges and fenestrate bryozoans, erect and pendant sponges were supported in their hydrodynamically unstable growth position by encrusters, chieflyArchaeolithoporelle hidensis, Shamovella obscura, an unnamed tubular organism, and microbes. Subsequent growth ofArchaeolithoporella hidensis, microbial crusts and syndepositional cements on the outer walls of live sponges would have impeded ambient water circulation and may have led to ‘creeping sponge death by suffocation’ or complete encrustation after death. Filling of pores in the initial and encrusted reef framework by internal sediment (packstone-grainstone; derived from the framework and the back-reef shelf/platform) and voluminous syndepositional marine-phreatic cements completed the framebuilding process.  相似文献   

7.
The contribution of sponges to marine surveys is often underestimated due to problems of identification, synonymous species and limited numbers of specialists in the field. Bell & Barnes (2001) illustrated how sponge morphological diversity (diversity of body forms) might be used as a predictor of sponge species diversity and richness. This study investigated these relationships at six tropical West Indian Ocean localities in a number of habitat types. These habitats included tropical coral reefs, soft substratum (seagrass, mangrove and sand), caves and boulders. Sampling was undertaken at three depth zones in coral reef habitats only (intertidal, 10–15 m and 20–25 m), with the other habitats sampled in less than 10m of water. Species diversity and richness were significantly correlated (P < 0.05) with morphological diversity at all localities and depths in coral reef and soft substratum habitats. However, no significant correlation was found between these variables in cave or boulder habitats. The slope of the linear regression found between morphological diversity and species diversity did not significantly differ between coral reef, soft substratum and temperate reef (data taken from Bell & Barnes 2001) habitats. Similarly coral reefs showed the same relationship between morphological diversity and species richness as temperate reefs, however the relationship between morphological diversity and species richness was significantly different at both habitats compared with soft substratum environments. Sponge morphological diversity therefore may be more useful as a predictor of sponge species diversity, rather than species richness, as the former relationship is common between more habitats than the latter.  相似文献   

8.
Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997–8 El-Niño Southern Oscillation (ENSO) had notable and severe impacts on coral reefs worldwide, but not all reef organisms were negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the 1997–8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks) at four sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant difference in sponge assemblage composition (ANOSIM) between pre- and post-ENSO years for any of the habitats, suggesting that neither the 1997–8 nor any subsequent smaller ENSO events have had any measurable impact on the reef sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa (including corals, echinoderms, bryozoans, and ascidians), which all suffered mass mortalities as a result of the ENSO event. Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other major groups of reef organisms.  相似文献   

9.
10.
Early Ordovician (early Floian) reefs of South China include lithistid sponge–Calathium reefs with a three‐dimensional skeletal framework. These structures are among the first post‐Cambrian skeletal‐dominated reef structures and provides an opportunity to test how the novel metazoan builders changed the environments and increased topographic complexity within benthic communities. We document the oldest labechiid stromatoporoid (Cystostroma) in a lithistid sponge–Calathium reef of the Hunghuayuan Formation in southeastern Guizhou, South China. These earliest stromatoporoids may have originated in reefs, and we argue that the complex topography created by the hypercalcified sponge Calathium facilitated the emergence of stromatoporoids. Beyond Cystostroma, keratose sponges, Pulchrilamina (hypercalcified sponge) and bryozoans have also inhabited in the micro‐habitats (cavities and hard substrates) provided by Calathium. These findings suggest that ecosystem engineering by Calathium played an important role in the further diversification of reefs during the Ordovician.  相似文献   

11.
Dr. Gregory E. Weeb 《Facies》1999,41(1):111-139
Summary Although skeletal organisms have received most of the emphasis in studies on Phanerozoic roef history, the roles of non-skeletal (non-enzymatic) carbonates (e.g., synsedimentary cements, automicrite, microbialite, etc.) in reef framework construction are becoming increasingly better understood. One problem in understanding the role of non-enzymatic carbonates in reef construction has been the difficulty in recognizing them in reef facies. Whereas skeletal organisms commonly can be recognized and documented in the field, non-enzymatic carbonates may be recognizable only in thin section. This paper describes the application of a new sampling technique that allows the quantitative comparison of skeletal macrofauna and flora with associated non-enzymatic carbonates and other microfaunal/microfloral constituents. The technique involves the point counting of thin sections made from small diameter cores that are systematically recovered from grids and line transects that cover a reasonable area (m2) of reef facies. Small, shallow-water patch reefs are abundant in scattered oolitic intervals in the Lower Carboniferous strata of eastern Australia. The youngest known Carboniferous reefs in eastern Australia occur in uppermost Visean strata (limestone FC5) near the top of the Rockhampton Group, approximately 50 km west-northwest of Rockhampton, Queensland. The largest sampled reef was 15 m thick and 42 m in diameter, with synsedimentary relief above the sea floor of at least 2 m during the primary growth phase. The reef occurs within bioclasticoolitic grainstones representing a shallow shelf setting and consists of eight common framework microfacies: 1) coral boundstone; 2) bryozoan boundstone; 3) mixed crinoid-bryozoan boundstone; 4) tubular problematica boundstone; 5) sponge-automicrite boundstone; 6) encrusted thrombolite boundstone; 7) mixed automicrite boundstone; and 8) thrombolitic wackestone-packstone. Reef growth was initiated by automicrite-producing biofilms, sponges and a tubular problematic organism. Primary relief building was accomplished by automicrite-dominated frameworks and lithistid sponges, crinoids, and corals. Large cerioidAphrophyllum coral colonies had a heterogeneous distribution through the reef. The framework of the main relief-bearing portion of the reef consists on average of 44.4% automicrite and automicrite-bound detritus, excluding automicrite-bound sponge body fossils, and at most 19.6% skeletal organisms in growth position (minimum of 7.2%). If sponge body fossils are included as automicrite framework, because they are preserved only as a result of automicrite formation, the percentage of automicrite and bound sediment is 54.9%. A smaller sampled reef consisting of the same basic facies had 39.5% automicrite and automicrite-bound sediment in its fremework (50.2% including sponges) and, at most, 33.4% skeletal organisms in growth position (minimum of 22.7%). The greater volume of skeletal framework in the small reef reflects a greater proportion of large corals. Of framebuilding skeletal organisms, automicrite-preserved lithistid and other sponges and cerioid rugose corals provided the greatest volume. However, crinoid holdfasts were the most widespread skeletal framework components. The dominant framework facies are sponge-automicrite boundstone, encrusted thrombolite, boundstone, mixed automicrite boundstone, and coral boundstone. The reefs are similar in overall framework construction and ecological succession to slightly older Visean reefs in eastern Australia and to some of the late Visean reefs of northern England. Surprisingly, framework similarities also exist between the reefs and certain thrombolite-lithistid-coral reefs of the European Jurassic.  相似文献   

12.
Carsten Helm  Immo Schülke 《Facies》2006,52(3):441-467
Small reefal bioconstructions that developed in lagoonal settings are widespread in a few horizons of the Late Jurassic (Oxfordian) succession of the Korallenoolith Formation, exposed southwest of Hannover, Northwest Germany. Especially the florigemma-Bank Member, “sandwiched” between oolite shoal deposits, exposes a high variety of build-ups, ranging from coral thrombolite patch reefs, to biostromes and to coral meadows. The reefs show a distribution with gradual facies variations along an outcrop belt that extends about 30 km from the Wesergebirge in the NW to the Osterwald Mts in the SE.The patch reefs from the Deister Mts locality at the “Speckhals” are developed as coral-chaetetid-solenoporid-microbialite reefs and represent a reef type that was hitherto unknown so far north of its Tethyan counterparts. They are mainly built up by coral thickets that are preserved in situ up to 1.5 m in height and a few metres in diameter. They contain up to 20 coral species of different morphotypes but are chiefly composed of phaceloid Stylosmilia corallina and Goniocora socialis subordinately. The tightly branched Stylosmilia colonies are stabilized by their anastomosing growth. The coral branches are coated with microbial crusts and micro-encrusters reinforcing the coral framework. Encrusters and other biota within the thicket show a typical community replacement sequence: Lithocodium aggregatum, Koskinobullina socialis and Iberopora bodeuri are pioneer organisms, whereas the occurrence of non-rigid sponges represents the terminal growth stage. The latter are preserved in situ and seem to be characteristic so far poorly known constituents of the Late Jurassic cryptobiont reef dweller community. The distance and overall arrangement of branches seems to be the crucial factor for the manifestation of a (cryptic) habitat promoting such community replacement sequences. Widely spaced branches often lack any encrusting and/or other reef dwelling organisms, whereas tightly branched corals, as is St. corallina, stimulate such biota. Hence, such reefs are well suited for research on coelobites and community sequences of encrusting and cavity dwelling organisms.  相似文献   

13.
Adachi, N., Ezaki, Y. & Liu, J. 2011: The oldest bryozoan reefs: a unique Early Ordovician skeletal framework construction. Lethaia, Vol. 45, pp. 14–23. The oldest bryozoan reefs occur in the Lower Ordovician (late Tremadocian) Fenhsiang Formation of the Three Gorges area, South China. These reefs show a unique type of bryozoan (Nekhorosheviella) framework, and were constructed as follows: the first stage involved colonization by lithistid sponges, which acted as a baffler to trap sediments, providing bryozoans with a stable substrate for attachment. The bryozoans then grew as an encruser on the surfaces of sponges, showing a preferential downwards and lateral growth within the sponge scaffolding to avoid biological and physical disturbance. Finally, these biotic combinations among skeletal organisms formed a rigid, three‐dimensional skeletal framework. This mode of bryozoan growth in association with lithistid sponges is remarkable and unique in its growth direction, and the appearance of such reefs, just prior to the widespread development of skeletal‐dominated reefs as part of the Great Ordovician Biodiversification Event, provides an excellent example of the earliest attempts by skeletal organisms to form frameworks by themselves. This find significantly enhances our understanding of the initial stages of skeletal‐dominated reef evolution and the ensuing development of reefs during the Middle–Late Ordovician. □Bryozoa, Early Ordovician, lithistid sponge, Ordovician radiation, reef.  相似文献   

14.
The 125-ka sea level, which was approximately 6 m above present-day sea level, led to the partial flooding of many Caribbean islands. On Grand. Cayman, this event led to the formation of the large Ironshore Lagoon that covered most of the western half of the island and numerous, small embayments along the south, east, and north coasts. At that time, at least 33 coral species grew in waters around Grand Cayman. This fauna, like the modern coral fauna of Grand Cayman, was dominated byMontastrea annularis, Porites porites, Acropora polmata, andA. cervicornis. Scolymia cubensis andMycetophyllia ferox, not previously identified from the Late Pleistocene, are found in the Pleistocene patch reefs.Madracis mirabilis, Colpophyllia breviserialis, Agaricia tenuifolia, A. lamarcki, A. undata, Millepora spp., Mycetophyllia reesi, M. aliciae, andM. danaana, found on modern reefs, have not been identified from the Late Pleistocene reefs. Conversely,Pocillopora sp. cf.P. palmata, which is found in Late Pleistocene reefs, is absent on the modern reefs around Grand Cayman. The corals in the Ironshore Formation of Grand Cayman have been divided into 10 associations according to their dominant species, overall composition, and faunal diversity. Many of these associations are similar to the modern associations around Grand Cayman. Each of the Pleistocene coral associations, which can be accurately located on the known Late Pleistocene paleogeography of Grand Cayman, developed in distinct environmental settings. Overall trends identified in the modern settings are also apparent in the Late Pleistocene faunas. Thus, the diversity of the coral faunas increased from the interior of the Ironshore Lagoon to the reef crest. Similarly, the coral diversity in the Pleistocene patch reefs was related to the size of the reefs and their position relative to breaks in the barrier reef. The barrier reef included corals that are incapable of sediment rejection; whereas the patch reefs lacked such corals.  相似文献   

15.
Ecosystems at the land–sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea‐level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10–30 cm) over month‐to‐year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster‐reef (Crassostrea virginica) growth to interannual variations in mean sea level (MSL) and improve long‐term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade‐old reefs (n = 3) constructed in 1997 and 2000, young reefs (n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade‐old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short‐term (month‐to‐year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster‐reef conservation and restoration.  相似文献   

16.
The structural complexity of coral reefs is important for their function as shelter and feeding habitats for coral reef fishes, but physical disturbance by human activities often reduce complexity of the reefs by selectively destroying fragile and more complex coral species. The damselfish Springer's demoiselle Chrysiptera springeri primarily utilize complex coral heads for shelter and are hence vulnerable to human disturbance. In order to evaluate the potential effect of habitat degradation on juvenile fish growth, coral reef cover, fish age at settling and otolith growth, juvenile Springer's demoiselle was investigated on a protected and non‐protected coral reef in Darvel Bay, Borneo. The protected reef had higher coverage of complex branching corals and exhibited a more complex 3‐dimensional structure than the non‐protected reef. Springer's demoiselle settled at the same age on non‐protected and protected reefs. The growth rates of the otoliths from Springer's demoiselle were similar during the pre‐settlement period on the two reefs (manova , P > 0.05), but from age 20 to 48 days (post‐settlement period) the otolith growth rate of juveniles on the non‐protected reef was reduced compared to those from the protected reef (manova , P = 0.017). However, the differences in the otolith size, and by inference, fish size, after 48 days were small. The small effect of habitat degradation on growth is likely related to the fact that the Springer's demoiselles collected on the non‐protected reef were associated with the few remaining complex coral heads. Increased foraging‐predation tradeoffs on the non‐protected reef may decrease food intake and growth of juvenile Springer's demoiselle, but the main effect of habitat degradation on their abundance is likely to be related to lack of suitable shelter, and consequently reduced carrying capacity, on disturbed reefs.  相似文献   

17.
Summary The microproblematicumPycnoporidium ? eomesozoicum Flügel, 1972, from Upper Triassic reefs of the Alpine-Mediterranean region, Turkey Oman and Iran (originally interpreted as possible alga) represents the type species of a new strophomenid brachiopod genus (Gosaukammerella n.g.). The genus is characterized by a very small, millimeter-sized plano-convex shell, whose ventral valve is attached to the substratum (mainly sponges) by symmetrically arranged outgrowths developing from a pseudopunctate, lamellose foliated shell wall and composed of densely spaced subparallel ‘tubes’ comparable with productide spines secreted by papillose extensions of the mantle.Gosaukammerella seems to be the only reliable candidate for the existence of post-Paleozoic strophomenid (productid ?) brachiopods. Gosaukammerella eomesozoica is restricted to possibly cryptic, shaded reef environments inhabited predominantly by sponges serving as substrates for micromorphic brachiopods.  相似文献   

18.
Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups   总被引:2,自引:0,他引:2  
Summary This research report contains nine case studies (part II to X) dealing with Palaeozoic and Mesozoic mud mounds, microbial reefs, and modern zones of active micrite production, and two parts (I and XI) summarizing the major questions and results. The formation of different types ofin situ formed micrites (automicrites) in close association with siliceous sponges is documented in Devonian, Carboniferous, Triassic, Jurassic and Cretaceous mounds and suggests a common origin with a modern facies found within reef caves. Processes involved in the formation of autochthonous micrites comprise: (i) calcifying mucus enriched in Asp and Glu, this type presumably is linked to the formation of stromatolites, thrombolites and massive fabrics; (ii) protein-rich substances within confined spaces (e.g. microcavities) result in peloidal pockets, peloidal coatings and peloidal stromatolites, and (iii) decay of sponge soft tissues, presumably enriched with symbiotic bacteria, lead to the micropeloidal preservation of parts of former sponge bodies. As a consequence, there is strong evidence that the primary production of micrite in place represents the initial cause for buildup development. The mode of precipitation corresponds to biologically-induced, matrix-mediated mineralization which results in high-Mg-calcites, isotopically balanced with inorganic cements or equilibrium skeletal carbonates, respectively. If distinct automicritic fabrics are absent, the source or origin of micrite remains questionable. However, the co-occurring identifiable components are inadequate, by quantity and physiology, to explain the enhanced accumulation of fine-grained calcium carbonate. The stromatolite reefs from the Permian Zechstein Basin are regarded as reminiscent of ancestral (Precambrian) reef facies, considered the precursor of automicrite/sponge buildups. Automicrite/sponge buildups represent the basic Phanerozoic reef type. Analogous facies are still present within modern cryptic reef habitats, where the biocalcifying carbonate factory is restricted in space.  相似文献   

19.
Predator–prey interactions can play a significant role in shaping the structure of both terrestrial and marine communities. Sponges are major contributors to benthic community structure on temperate reefs and although several studies have investigated how abiotic processes control sponge distributions on these reefs, the role of predation is less clear. We investigated the relationship between sponge predators and the distribution of sponges on temperate reefs in the South Atlantic Bight (SAB), off Georgia, USA. We documented sponge species richness and abundance, spongivorous fish density, and examined the ability of 19 sponge species to chemically and structurally deter predation by fishes. We also conducted reciprocal transplant experiments to determine if predation by fishes contributes to the observed zonation of sponge species on these reefs. Our surveys revealed two distinct sponge assemblages: one characterized by amorphous and encrusting sponge morphotypes colonizing the vertical, rocky outcroppings (scarp sponge community), while the other consisted of pedunculate, digitate, and arborescent growth forms occurring on the sediment-laden reef top (plateau sponge community). Spongivorous fishes were more abundant on the scarp than the plateau and scarp sponges were found to be more effective than plateau sponges at chemically deterring generalist fishes. In contrast, plateau sponges were more reliant on structural defenses: a result consistent with the higher spicule content of their skeletons. Transplant experiments confirmed that predators prevent some plateau sponges from colonizing the scarp even though they possess structural defenses. Thus, predation appears to play a role in shaping sponge community structure on SAB reefs by restricting those species lacking adequate chemical defenses to habitats where there is a paucity of spongivores.  相似文献   

20.
The Late Paleocene Salt Mountain Limestone from southwestern Alabama is a coral-algal-sponge buildup which further characterizes the faunal makeup of early post-Cretaceous reefs. Thin sectioning has disclosed a variety of lithologies, including large foram-algal packstone, algal bindstone, and sponge bafflestone. A low-diversity fauna of massive scleractinian corals caps the sequence, but may be developed intermittently throughout the section as well. The constructional importance of coralline algae and the low diversity of scleractinian corals are characteristic of Paleocene reefs in general. Sponges, however, are virtually unknown in earliest Tertiary sediments. Their abundance in the Salt Mountain demonstrates not only their local contribution to Early Tertiary reefs, but may also reflect an opportunistic response of sponges as reef constructors following the extinction of oligotrophic, rudist-coral reef communities of the Late Cretaceous. □ Paleocene, reef, paleoecology, sponges, extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号