首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The DraR/DraK two-component system was found to be involved in the differential regulation of antibiotic biosynthesis in a medium-dependent manner; however, its function and signaling and sensing mechanisms remain unclear. Here, we describe the solution structure of the extracellular sensor domain of DraK and suggest a mechanism for the pH-dependent conformational change of the protein. The structure contains a mixed alpha-beta fold, adopting a fold similar to the ubiquitous sensor domain of histidine kinase. A biophysical study demonstrates that the E83, E105, and E107 residues have abnormally high pKa values and that they drive the pH-dependent conformational change for the extracellular sensor domain of DraK. We found that a triple mutant (E83L/E105L/E107A) is pH independent and mimics the low pH structure. An in vivo study showed that DraK is essential for the recovery of the pH of Streptomyces coelicolor growth medium after acid shock. Our findings suggest that the DraR/DraK two-component system plays an important role in the pH regulation of S. coelicolor growth medium. This study provides a foundation for the regulation and the production of secondary metabolites in Streptomyces.  相似文献   

4.
5.
Doxorubicin (DXR) and daunorubicin (DNR) are anthracycline antibiotics produced by Streptomyces peucetius and widely used as cancer chemotherapeutic agents. To improve their productivity, regulation of DXR/DNR synthesis genes as well as central metabolic pathway genes must be understood more clearly. So far, studies have focused on DXR/DNR gene regulation. To investigate the correlation between the central metabolic pathway genes and DXR/DNR productivity, we selected 265 genes involved in glycolysis, fermentation, the citric acid cycle, butanoate metabolism, etc., and searched for their sequences in the S. peucetius genome by comparing gene sequences to those of Streptomyces coelicolor. The homologous genes were amplified by PCR and arrayed on glass microarray slides. Gene expression was monitored under two different growth media conditions, R2YE and NDYE. Genes involved in the production of malonyl-CoA and propionyl-CoA, the main precursors for doxorubicin synthesis, were mainly upregulated in NDYE media. Genes related to acetyl-CoA and the urea cycle were also upregulated. These changes in gene expression were confirmed by real-time RT-PCR.  相似文献   

6.
We identified and characterized the gene encoding a new eukaryotic-type protein kinase from Streptomyces coelicolor A3(2) M145. PkaD, consisting of 598 amino acid residues, contained the catalytic domain of eukaryotic protein kinases in the N-terminal region. A hydrophobicity plot indicated the presence of a putative transmembrane spanning sequence downstream of the catalytic domain, suggesting that PkaD is a transmembrane protein kinase. The recombinant PkaD was found to be phosphorylated at the threonine and tyrosine residues. In S. coelicolor A3(2), pkaD was transcribed as a monocistronic mRNA, and it was expressed constitutively throughout the life cycle. Disruption of chromosomal pkaD resulted in a significant loss of actinorhodin production. This result implies the involvement of pkaD in the regulation of secondary metabolism.  相似文献   

7.
Amycolatopsis, genus of a rare actinomycete, produces many clinically important antibiotics, such as rifamycin and vancomycin. Although GlnR of Amycolatopsis mediterranei is a direct activator of the glnA gene expression, the production of GlnR does not linearly correlate with the expression of glnA under different nitrogen conditions. Moreover, A. mediterranei GlnR apparently inhibits rifamycin biosynthesis in the absence of nitrate but is indispensable for the nitrate-stimulating effect for its production, which leads to the hyper-production of rifamycin. When glnR of A. mediterranei was introduced into its phylogenetically related organism, Streptomyces coelicolor, we found that GlnR widely participated in the host strain’s secondary metabolism, resemblance to the phenotypes of a unique S. coelicolor glnR mutant, FS2. In contrast, absence or increment in copy number of the native S. coelicolor glnR did not result in a detectable pleiotrophic effect. We thus suggest that GlnR is a global regulator with a dual functional impact upon nitrogen metabolism and related antibiotics production.  相似文献   

8.
Since microorganisms normally co-exist with other species in nature, they have developed complex metabolic and physiological responses as a result of such interspecies interactions. We utilized some of these interactions by introducing heat-killed cells of Bacillus subtilis and Staphylococcus aureus to Streptomyces coelicolor cultures and, as a result, stimulated undecylprodigiosin production. Undecylprodigiosin is not only an antibiotic; it has also been attributed with antitumor activities, but, in a defined medium, pure cultures of S. coelicolor produced only low concentrations. Elicitation with B. subtilis increased the maximum undecylprodigiosin concentration by threefold and S. aureus by fivefold compared with the pure culture of S. coelicolor. Growth and glucose consumption of elicited S. coelicolor, however, remained similar to those observed in the pure culture. Furthermore, another positive outcome of the elicitation with both B. subtilis and S. aureus was the earlier onset of undecylprodigiosin production by 24 h compared with the pure culture of S. coelicolor. This is the first time that such a phenomenon has been seen in 2L bioreactors. Our work supports the use of biotic elicitation in order to enhance the production of secondary metabolites for industrial-scale applications.  相似文献   

9.
10.
GlnR is the global regulator of nitrogen assimilation in Streptomyces coelicolor M145 and other actinobacteria. Two-dimensional polyacrylamide gel electrophoresis analyses were performed to identify new GlnR target genes by proteomic comparison of wild-type S. coelicolor M145 and a ΔglnR mutant. Fifty proteins were found to be differentially regulated between S. coelicolor M145 and the ΔglnR mutant. These spots were identified by nanoHPLC–ESI-MS/MS and classified according to their cellular role. Most of the identified proteins are involved in amino acid biosynthesis and in carbon metabolism, demonstrating that the role of GlnR is not restricted to nitrogen metabolism. Thus, GlnR is supposed to play an important role in the global metabolic control of S. coelicolor M145.  相似文献   

11.
Purines are a primary source of carbon and nitrogen in soil; however, their metabolism is poorly understood in Streptomyces. Using a combination of proteomics, metabolomics, and metabolic engineering, we characterized the allantoin pathway in Streptomyces coelicolor. When cells grew in glucose minimal medium with allantoin as the sole nitrogen source, quantitative proteomics identified 38 enzymes upregulated and 28 downregulated. This allowed identifying six new functional enzymes involved in allantoin metabolism in S. coelicolor. From those, using a combination of biochemical and genetic engineering tools, it was found that allantoinase (EC 3.5.2.5) and allantoicase (EC 3.5.3.4) are essential for allantoin metabolism in S. coelicolor. Metabolomics showed that under these growth conditions, there is a significant intracellular accumulation of urea and amino acids, which eventually results in urea and ammonium release into the culture medium. Antibiotic production of a urease mutant strain showed that the catabolism of allantoin, and the subsequent release of ammonium, inhibits antibiotic production. These observations link the antibiotic production impairment with an imbalance in nitrogen metabolism and provide the first evidence of an interaction between purine metabolism and antibiotic biosynthesis.  相似文献   

12.
13.
Fermenting Escherichia coli is able to produce formate and molecular hydrogen (H2) when grown on glucose. H2 formation is possessed by two hydrogenases, 3 (Hyd-3) and 4 (Hyd-4), those, in conjunction with formate dehydrogenase H (Fdh-H), constitute distinct membrane-associated formate hydrogenylases. At slightly alkaline pH (pH 7.5), the production of H2 was found to be dependent on Hyd-4 and the F0F1-adenosine triphosphate (ATPase), whereas external formate increased the activity of Hyd-3. In this study with cells grown without and with external formate H2 production dependent on pH was investigated. In both types of cells, H2 production was increased after lowering of pH. At acidic pH (pH 5.5), this production became insensitive either to N,N′-dicyclohexylcarbodiimide or to osmotic shock and it became largely dependent on Fdh-H and Hyd-3 but not Hyd-4 and the F0F1-ATPase. The results indicate that Hyd-3 has a major role in H2 production at acidic pH independently on the F0F1-ATPase.  相似文献   

14.
15.
16.
RNase III is a double strand specific endoribonuclease that is involved in the regulation of gene expression in bacteria. In Streptomyces coelicolor, an RNase III (rnc) null mutant manifests decreased ability to synthesize antibiotics, suggesting that RNase III globally regulates antibiotic production in that species. As RNase III is involved in the processing of ribosomal RNAs in S. coelicolor and other bacteria, an alternative explanation for the effects of the rnc mutation on antibiotic production would involve the formation of defective ribosomes in the absence of RNase III. Those ribosomes might be unable to translate the long polycistronic messenger RNAs known to be produced by operons containing genes for antibiotic production. To examine this possibility, we have constructed a reporter plasmid whose insert encodes an operon derived from the actinorhodin cluster of S. coelicolor. We show that an rnc null mutant of S. coelicolor is capable of translating the polycistronic message transcribed from the operon. We show further that RNA species with the mobilities expected for mature 16S and 23S ribosomal RNAs are produced in the rnc mutant even though the mutant contains higher levels of the 30S rRNA precursor than the wild-type strain.  相似文献   

17.
Streptomyces coelicolor, the model species for morphologically complex actinomycete bacteria, has unique characteristics such as morphological and physiological differentiation, which are controlled by various factors and several protein kinases. From the whole genomic sequence of S. coelicolor A3(2), 44 putative serine/threonine (Ser/Thr) protein kinases were identified, and the pkaF gene was chosen as the best-conserved protein for typical Ser/Thr protein kinases. pkaF encodes a 667-amino acid protein with a predicted N-terminal Ser/Thr kinase domain and four repeated C-terminal penicillin-binding domains and Ser/Thr kinase-associated (PASTA) domains. Based on PCR, a pkaF gene was cloned and heterologously expressed. PkaF expressed in Escherichia coli had the bigger molecular size than the expected value (75 kDa) and was further purified by Ni2+-NTA agarose affinity column chromatography to homogeneity. The purified PkaF was autophosphorylated through the transfer of the γ-phosphate group of ATP. The extent of phosphorylation was proportional to the amount of PkaF, and the phospho-PkaF was dephosphorylated by the addition of the cell lysate of S. coelicolor A3(2). Although no change was observed in the pkaF disruptant, overexpression of pkaF induced severe repression of morphogenesis and actinorhodin production, but not undecylprodigiosin production, implying that PkaF specifically regulates morphogenesis and actinorhodin production in S. coelicolor.  相似文献   

18.
《Gene》1996,169(1):91-95
A-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) is essential for aerial mycelium formation and streptomycin (Sm) production in Streptomyces griseus. A protein Ser/Thr kinase (AfsK), the product of the Streptomyces coelicolor A3(2) afsK gene, controlling secondary metabolism in this strain, reversed the aerial mycelium-negative phenotype of an A-factor-deficient mutant strain, S. griseus HH1, and induced sporulation without affecting A-factor productivity or Sm production. A mutant AfsK protein lacking kinase activity failed to induce aerial mycelium formation which indicates the importance of the kinase activity for suppression in S. griseus. These data suggest that a Ser/Thr kinase functionally similar to S. coelicolor A3(2) AfsK plays a regulatory role in aerial mycelium formation in S. griseus, either as a member in the A-factor regulatory network or independently of this network  相似文献   

19.
Streptomyces are ubiquitous soil bacteria well known for their ability to produce a wide range of secondary metabolites including antibiotics. In their natural environments, they co-exist and interact with complex microbial communities and their natural products are assumed to play a major role in mediating these interactions. Reciprocally, their secondary metabolism can be influenced by the surrounding microbial communities. Little is known about these complex interactions and the underlying molecular mechanisms. During pairwise co-culture experiments, a fluorescent Pseudomonas, Pseudomonas fluorescens BBc6R8, was shown to prevent the production of the diffusible blue pigment antibiotic γ-actinorhodin by Streptomyces coelicolor A3(2) M145 without altering the biosynthesis of the intracellular actinorhodin. A mutant of the BBc6R8 strain defective in the production of gluconic acid from glucose and consequently unable to acidify the culture medium did not show any effect on the γ-actinorhodin biosynthesis in contrast to the wild-type strain and the mutant complemented with the wild-type allele. In addition, when glucose was substituted by mannitol in the culture medium, P. fluorescens BBc6R8 was unable to acidify the medium and to prevent the biosynthesis of the antibiotic. All together, the results show that P. fluorescens BBc6R8 impairs the biosynthesis of the lactone form of actinorhodin in S. coelicolor by acidifying the medium through the production of gluconic acid. Other fluorescent Pseudomonas and the opportunistic pathogen Pseudomonas aeruginosa PAO1 also prevented the γ-actinorhodin production in a similar way. We propose some hypotheses on the ecological significance of such interaction.  相似文献   

20.
The Gram‐positive aerobe Streptomyces coelicolor undergoes a complex life cycle including growth as vegetative hyphae and the production of aerial hyphae and spores. Little is known about how spores retain viability in the presence of oxygen; however, nothing is known about this process during anaerobiosis. Here, we demonstrate that one of the three respiratory nitrate reductases, Nar‐1, synthesized by S. coelicolor is functional exclusively in spores. A tight coupling between nitrite production and the activity of the cytoplasmically oriented Nar‐1 enzyme was demonstrated. No exogenous electron donor was required to drive nitrate reduction, which indicates that spore storage compounds are used as electron donors. Oxygen reversibly inhibited nitrate reduction by spores but not by spore extracts, suggesting that nitrate transport might be the target of oxygen inhibition. Nar‐1 activity required no de novo protein synthesis indicating that Nar‐1 is synthesized during sporulation and remains in a latently active state throughout the lifetime of the spore. Remarkably, the rates of oxygen and of nitrate reduction by wetted spores were comparable. Together, these findings suggest that S. coelicolor spores have the potential to maintain a membrane potential using nitrate as an alternative electron acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号