共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
J P Merlie S Heinemann B Einarson J M Lindstrom 《The Journal of biological chemistry》1979,254(14):6328-6332
The degradation of acetylcholine receptor observed in denervated and innervated normal rat diaphragms in organ culture is stimulated by exogenous antireceptor serum. In this paper we demonstrate that diaphragms from rats with experimental autoimmune myasthenia gravis contain reduced amounts of acetylcholine receptor. Acetylcholine receptor from myasthenic, but not from normal, rats has antibody bound to it and is degraded at an accelerated rate. We conclude that in the chronic phase of experimental autoimmune myasthenia gravis increased acetylcholine receptor degradation can be accounted for by a mechanism involving antigenic modulation, and that such a process can contribute to the clinical symptoms of impaired neuromuscular transmission. 相似文献
3.
4.
Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells 总被引:6,自引:0,他引:6
Dendritic cells (DC) are usually regarded as antigen-presenting cells involved in T cell activation, but DC also directly and indirectly affect B cell activation, antibody synthesis, and isotype switch. In the present study, bone marrow (BM)-derived DC from healthy rats were pulsed in vitro with acetylcholine receptor (AChR) and injected subcutaneously into healthy Lewis rats. No clinical signs of the first phase of experimental autoimmune myasthenia gravis (EAMG) were observed during 3 weeks of observation. Upon immunization with AChR and complete Freund's adjuvant, the rats that had received AChR-pulsed DC did not develop clinical EAMG. This tolerance of rats injected with AChR-pulsed DC was associated with reduced expression of B cell-activating factor (BAFF) and by reduced numbers of B cells among splenic mononuclear cells (MNC) compared to rats injected with medium or unpulsed DC. Anti-AChR IgG antibody-secreting cells were decreased, while the ratio of IgG1:IgG2b isotypes was enhanced in rats treated with AChR-pulsed DC compared to control EAMG rats. These results demonstrate that AChR-pulsed DC induce peripheral tolerance to EAMG by possibly inhibiting the expression of BAFF and production of anti-AChR antibodies, providing a possible potential for immunotherapy of antibody-mediated autoimmune diseases. 相似文献
5.
Gene(s) at the I-A subregion of the murine major histocompatibility complex influence susceptibility to experimental autoimmune myasthenia gravis. C57Bl/6 mice immunized with acetylcholine receptors (AChR) in complete Freund's adjuvant demonstrated cellular and humoral immune responses to AChR. They developed muscle weakness characteristic of myasthenia gravis and demonstrated a reduction in the muscle AChR content. The kinetics of AChR-specific lymphocyte proliferation generally correlate with anti-AChR antibody response. AChR-specific lymphocyte proliferation was also observed in C57Bl/6 splenocytes after secondary immunization with AChR. The in vitro cellular reactivity to AChR in experimental autoimmune myasthenia gravis (EAMG) mice (C57Bl/6) was suppressed by monoclonal anti-I-Ab antibodies directed against private (Ia20) or public (Ia8) specificities, suggesting a critical role for these Ia determinants in the cellular immune response to AChR in murine EAMG. 相似文献
6.
Liu L Garcia AM Santoro H Zhang Y McDonnell K Dumont J Bitonti A 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(8):5390-5398
The neonatal FcR (FcRn) plays a critical role in IgG homeostasis by protecting it from a lysosomal degradation pathway. It has been shown that IgG has an abnormally short half-life in FcRn-deficient mice and that FcRn blockade significantly increases the catabolism of serum IgG in mice. Therefore, reduction of serum IgG half-life may have therapeutic benefits in Ab-mediated autoimmune diseases. We have studied the therapeutic effects of an anti-rat FcRn mAb, 1G3, in two rat models of myasthenia gravis, a prototypical Ab-mediated autoimmune disease. Passive experimental autoimmune myasthenia gravis was induced by administration of an anti-acetylcholine receptor (AChR) mAb, and it was shown that treatment with 1G3 resulted in dose-dependent amelioration of the disease symptoms. In addition, the concentration of pathogenic Ab in the serum was reduced significantly. The effect of 1G3 was also studied in an active model of experimental autoimmune myasthenia gravis in which rats were immunized with AChR. Treatment with 1G3 significantly reduced the severity of the disease symptoms as well as the levels of total IgG and anti-AChR IgG relative to untreated animals. These data suggest that FcRn blockade may be an effective way to treat Ab-mediated autoimmune diseases. 相似文献
7.
P Christadoss V A Lennon C J Krco C S David 《Journal of immunology (Baltimore, Md. : 1950)》1982,128(3):1141-1144
When MHC congenic and recombinant mice are inoculated with Torpedo acetylcholine receptors (AChR) with adjuvants, the magnitude of autoantibody responses to muscle AChR and the defect of neuromuscular transmission closely parallel in vitro lymphocyte proliferative responses to Torpedo AChR. All of these responses are controlled by gene(s) at the I-A subregion of the H-2 complex. Data presented in this report confirm in back-cross mice that T lymphocyte proliferative responses to AChR are controlled by a Mendelian dominant gene linked to H-2, at the I-A subregion. Lymphocyte responses were eliminated by blocking Ia antigens on lymph node cell surfaces with appropriate anti-I-A alloantisera and by removal of adherent cells. A spontaneous mutation at the I-A subregion in the B6 strain, which resulted in structural alteration of the A beta chain of Ia, converted high responsiveness to AChR to a state of low responsiveness. These data implicate a macrophage-associated Ia molecule in induction of autoimmune responses to AchR, probably in the presentation of AChR to helper T lymphocytes that thereby help B lymphocytes to differentiate into anti-AChR antibody-forming cells. 相似文献
8.
Baggi F Annoni A Ubiali F Milani M Longhi R Scaioli W Cornelio F Mantegazza R Antozzi C 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(4):2697-2703
Experimental autoimmune myasthenia gravis (EAMG), a model for human myasthenia (MG), is routinely induced in susceptible rat strains by a single immunization with Torpedo acetylcholine receptor (TAChR). TAChR immunization induces anti-AChR Abs that cross-react with self AChR, activate the complement cascade, and promote degradation of the postsynaptic membrane of the neuromuscular junction. In parallel, TAChR-specific T cells are induced, and their specific immunodominant epitope has been mapped to the sequence 97-116 of the AChR alpha subunit. A proliferative T cell response against the corresponding rat sequence (R97-116) was also found in TAChR-immunized rats. To test whether the rat (self) sequence can be pathogenic, we immunized Lewis rats with R97-116 or T97-116 peptides and evaluated clinical, neurophysiological, and immunological parameters. Clinical signs of the disease were noted only in R97-116-immunized animals and were confirmed by electrophysiological signs of impaired neuromuscular transmission. All animals produced Abs against the immunizing peptide, but anti-rat AChR Abs were observed only in animals immunized with the rat peptide. These findings suggested that EAMG in rats can be induced by a single peptide of the self AChR, that this sequence is recognized by T cells and Abs, and that breakdown of tolerance to a self epitope might be an initiating event in the pathogenesis of rat EAMG and MG. 相似文献
9.
To determine whether the chronic presence of antibody to acetylcholine receptor (AChR) can account for the neuromuscular abnormalities in myasthenia gravis (MG), rats injected repeatedly with monoclonal antibody (mAb) to AChR were compared with those injected with control mAb. In a previous report, those receiving anti-AChR mAb, studied ultrastructurally, had grossly simplified endplates when compared with normal controls. In this report, animals injected once or chronically for 9 to 12 wk had reduced content of muscle AChR. The chronically injected animals also had diminished miniature endplate potential amplitudes, but to a lesser extent than the reduction in AChR content. These studies establish the pathogenetic role of antibody to AChR in the induction of the ultrastructural, biochemical, and electrophysiologic hallmarks of MG. 相似文献
10.
11.
Myasthenia gravis (MG) and its animal model, experimental autoimmune MG (EAMG), are T cell-dependent diseases mediated by antibodies against acetylcholine receptor (AChR) on skeletal muscle. Most of the antibodies are directed toward conformation-dependent epitopes on the AChR, whereas T cells recognize denatured AChR. In search of T cell epitopes in EAMG, we tested 24 synthetic peptides covering 62% of the alpha-subunit sequence of Torpedo californica electric organ AChR in the T cell proliferation assay with lymph node cells from rats immunized with AChR. In Lewis rats, 2 of these peptides, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90, strongly stimulated T cells and, of these, [Tyr 100]alpha 100-116 was much more potent; 4 other peptides were weakly mitogenic and 18 were ineffective. None of the 24 synthetic peptides alone stimulated anti-AChR production and, when added to cultures along with AChR, [Tyr 100]alpha 100-116 and [Gly 89, Tyr 90]alpha 73-90 suppressed antibody production. Of twelve cloned T cell lines specific to AChR, 4 responded to [Tyr 100]alpha 100-116, indicating the importance of the epitope in alpha 101-116 in Lewis rats. In three other strains of rats whose responses to AChR and its subunits were similar to those in the Lewis rat, neither [Tyr 100]alpha 100-116 nor [Gly 89, Tyr 90]alpha 73-90 was stimulatory. Instead, completely different sets of peptides stimulated their T cells. When peptides were used as immunogens, each strain (except Lewis rats) responded only to the peptides that stimulated AChR-immune T cells from the same strain. Genetically restricted T cell recognition of AChR peptides in rats suggests that T cells from MG patients with different major histocompatibility haplotypes may recognize different AChR peptides. 相似文献
12.
Autoimmunity to acetylcholine receptors in myasthenia gravis 总被引:1,自引:0,他引:1
A Vincent 《Biochemical Society transactions》1991,19(1):180-183
13.
Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis 总被引:6,自引:0,他引:6
Zhang GX Xiao BG Bai XF van der Meide PH Orn A Link H 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(7):3775-3781
IFN-gamma can either adversely or beneficially affect certain experimental autoimmune diseases. To study the role of IFN-gamma in the autoantibody-mediated experimental autoimmune myasthenia gravis (EAMG), an animal model of myasthenia gravis in humans, IFN-gammaR-deficient (IFN-gammaR-/-) mutant C57BL/6 mice and congenic wild-type mice were immunized with Torpedo acetylcholine receptor (AChR) plus CFA. IFN-gammaR-/- mice exhibited significantly lower incidence and severity of muscle weakness, lower anti-AChR IgG Ab levels, and lower Ab affinity to AChR compared with wild-type mice. Passive transfer of serum from IFN-gammaR-/- mice induced less muscular weakness compared with serum from wild-type mice. In contrast, numbers of lymph node cells secreting IFN-gamma and of those expressing IFN-gamma mRNA were strongly augmented in the IFN-gammaR-/- mice, reflecting a failure of negative feedback circuits. Cytokine studies by in situ hybridization revealed lower levels of lymphoid cells expressing AChR-reactive IL-1beta and TNF-alpha mRNA in AChR + CFA-immunized IFN-gammaR-/- mice compared with wild-type mice. No differences were found for AChR-reactive cells expressing IL-4, IL-10, or TGF-beta mRNA. These results indicate that IFN-gamma promotes systemic humoral responses in EAMG by up-regulating the production and the affinity of anti-AChR autoantibodies, thereby contributing to susceptibility to EAMG in C57BL/6-type mice. 相似文献
14.
Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis 总被引:3,自引:0,他引:3
To study the characteristics of the individual autoantibodies that are important in the development of an autoimmune disease, we produced 26 anti-acetylcholine receptor (anti-AChR) monoclonal antibodies (mcAb) and studied the experimental autoimmune myasthenia gravis (EAMG) induced by a number of them. The mcAb reactive with mammalian acetylcholine receptor (M-AChR) exhibited a wide range of dissociation rates from in situ M-AChR of motor endplates. All anti-M-AChR mcAb were capable of producing at least some degree of histopathologic change at the endplate indicative of EAMG, but their potencies varied markedly. One mcAb induced, even at large doses, only minor macrophage invasion without clinical or electromyographic effect. Others induced severe EAMG, and even death, at 1/200th the dose. Low potency was associated with high rate of mcAb dissociation from antigen. High potency was associated with intermediate avidity, not high avidity. These observations suggest that in EAMG, and perhaps in myasthenia gravis, the characteristics of the individual antibodies making up the autoimmune response can determine the severity of the autoimmune disease. 相似文献
15.
Conditions are described for an assay that allows the percent inhibition of α-bungarotoxin binding to acetylcholine receptors by antisera and monovalent antigen-binding fragments of antibody molecules (Fab) to be determined. Anti-Torpedo californica acetylcholine-receptor antisera, prepared in New Zealand White rabbits and Lewis rats, were tested for the ability to inhibit [125I]-α-bungarotoxin binding to membrane-associated and detergent-solubilized T californica acetylcholine receptors. Similar inhibition studies were performed using rabbit antisera and antigen-binding fragments prepared against each of the four acetylcholine receptor subunits. Antisera and antigen-binding fragments prepared against intact receptor could inhibit a maximum of 50% of the α-bungarotoxin binding to solubilized receptor. The results using monovalent antigen-binding fragments indicated that the inhibition was not due to antibody-mediated aggregation of receptor molecules. Rabbits and rats immunized with receptor denatured by sodium dodecyl sulfate all produced antisera that could bind to nondenatured receptor, but none of these animals developed experimental autoimmune myasthenia gravis. These results suggest that the antigenic determinants present on acetylcholine receptors responsible for induction of experimental auto-immune myasthenia gravis are lost with sodium dodecyl sulfate denaturation. A strong correlation was also observed between the presence of experimental autoimmune myasthenia gravis in rats and rabbits and the ability of the antisera from these animals to inhibit 50% of α-bungarotoxin binding to solubilized acetylcholine receptors. 相似文献
16.
17.
Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptor-specific T cells 总被引:7,自引:0,他引:7
We have recently described an algorithm to design, among others, peptides with complementarity contour to autoimmune epitopes. Immunization with one such peptide resulted in a monoclonal antibody (mAb), termed CTCR8, that specifically recognized Vbeta15 containing TCR on acetylcholine receptor (AChR) alpha-chain residue 100-116-specific T cells. CTCR8 was found to label the cell surface of AChR100-116-specific T cell lines and clones, immunoprecipitate the TCR from such cells, and block their proliferative responses to AChRalpha100-116. In the present report, we have found that there is a marked reduction in IFN-gamma and no effect on IL-10 production in a CTCR8-treated AChRalpha100-116-specific T cell line. Interestingly, when AChR100-116-primed, primary T cells were stimulated with peptide and treated with CTCR8, there was once again inhibition of IFN-gamma but also marked stimulation of IL-10 production. The change in the Th1/Th2 cytokine profile was paralleled by a reduction in AChR-specific IgG2a and IgM with no effect on IgG1. Remarkably, the most profoundly inhibited Ab population was that which causes experimental autoimmune myasthenia gravis (EAMG) by reaction with the main immunogenic region (alpha61-76) of the AChR. Based on these results, CTCR8 was tested for prophylactic and therapeutic effects in EAMG. EAMG induced by immunization with purified native Torpedo AChR was both inhibited and reversed by CTCR8. These findings suggest a means to produce therapeutic mAb for the treatment of autoimmune diseases. 相似文献
18.
Pixantrone (BBR2778) reduces the severity of experimental autoimmune myasthenia gravis in Lewis rats
Ubiali F Nava S Nessi V Longhi R Pezzoni G Capobianco R Mantegazza R Antozzi C Baggi F 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(4):2696-2703
Pixantrone (BBR2778) (PIX) and mitoxantrone share the same mechanism of action because both drugs act as DNA intercalants and inhibitors of topoisomerase II. PIX is an interesting candidate immunosuppressant for the treatment of autoimmune diseases because of its reduced cardiotoxicity compared with mitoxantrone. The clinical response to conventional immunosuppressive treatments is poor in some patients affected by myasthenia gravis (MG), and new but well-tolerated drugs are needed for treatment-resistant MG. PIX was tested in vitro on rat T cell lines specific for the immunodominant peptide 97-116 derived from rat acetylcholine receptor (AChR), and showed strong antiproliferative activity in the nanomolar range. We demonstrate in this study that PIX administration reduced the severity of experimental autoimmune MG in Lewis rats. Biological and immunological analysis confirmed the effect of PIX, compared with vehicle-treated as well as mitoxantrone-treated experimental autoimmune MG rats. Anti-rat AChR Abs were significantly reduced in PIX-treated rats, and AChR content in muscles were found increased. Torpedo AChR-induced T cell proliferation tests were found reduced in both in vitro and ex vivo experiments. The effectiveness and the reduced cardiotoxicity make PIX a promising immunosuppressant agent suitable for clinical investigation in MG, although additional experiments are needed to confirm its safety profile in prolonged treatments. 相似文献
19.
20.
Dendritic cells (DC) are highly specialized antigen presenting cells that play critical roles as instigators and regulators of immune responses including B cell function, antibody synthesis and isotype switch. In this study, we compared immunotherapeutic effect of IL-10-treated DC (IL-10-DC) via both intraperitoneal (i.p.) and subcutaneous (s.c.) delivery in rats with incipient experimental autoimmune myasthenia gravis (EAMG). Spleen DC were isolated from onset of EAMG on day 39 post-immunization, exposed in vitro to IL-10, and then injected into incipient EAMG at dose of 1 x 10(6) cells/rat on day 5 after immunization. Intraperitoneal administration of IL-10-DC suppressed clinical scores, anti-acetylcholine receptors (AChR) antibody secreting cells, antigen-specific IL-10/IFN-gamma production and T cell proliferation compared to control EAMG rats. Importantly, IL-10-DC, if given by s.c. route, failed to ameliorate clinical sign of EAMG. Simultaneously, T cell proliferation, anti-AChR antibody secreting cells and IL-10/IFN-gamma production had no alteration, as compared to control EAMG rats. Both in vitro and in vivo experiments showed that treatment of IL-10 inhibited the migration of DC toward MIP-3beta and lymph node, indicating that in vitro manipulation of DC with IL-10 alters the migration of DC that influences the therapeutic effect in the treatment of autoimmune diseases. In MG patients, neither the improvement of clinical symptom nor the alteration of immunological parameter was observed through s.c. delivery of IL-10-DC, suggesting the limitation of IL-10-DC in the treatment of MG patients. 相似文献