首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shuttle vector pZL1 which can replicate both in Gluconobacter oxydans and Escherichia coli was constructed based on G. oxydans DSM2003 cryptic plasmid pGOX3, a homology of G. oxydans 621H pGOX3, and E. coli cloning vector pUC18. It was found to be stably maintained in G. oxydans during the serial subcultures in the absence of antibiotic pressure for 144 h. With pGOX3 as the reference sample, the relative copy number of pZL1 in G. oxydans is 13 determined by real-time fluorescence quantitative PCR (qPCR). The copy number of pZL1 is much higher than pBBR1MCS5 in E. coli. The vector pZL1 contains six commonly used restriction endonuclease sites, HindIII, SalI, XbaI, BamHI, SmaI, KpnI, and SacI, and is easy to manipulate in molecular biology experiments. The shuttle vector was used to express a reporter protein wasabi successfully in G. oxydans DSM2003 under the control of the tufB promoter.  相似文献   

2.
3.

Background

Major depressive disorder (MDD) is the leading cause of disability worldwide, and has significant genetic predisposition. Mitochondria may have a role in MDD and so mitochondrial DNA (mtDNA) has been suggested as a possible biomarker for this disease. We aimed to test whether the mtDNA copy number of peripheral blood leukocytes is related to MDD in young adults.

Methods

A case-control study was conducted with 210 MDD patients and 217 healthy controls (HC). The mtDNA copy number was measured by quantitative polymerase chain reaction (qPCR) method. Depression severity was assessed by the Hamilton-17 Depression Rating Scale (HDRS-17).

Results

We found no significant differences in mtDNA copy number between MDD patients and HC, though the power analysis showed that our sample size has enough power to detect the difference. There were also no significant correlations between mtDNA copy number and the clinical characteristics (such as age, age of onset, episodes, Hamilton Depression Rating Scale (HDRS) score and Global Assessment of Function Scale (GAF) score) in MDD patients.

Conclusion

Our study suggests that leukocyte mtDNA copy number is unlikely to contribute to MDD, but it doesn’t mean that we can exclude the possibility of involvement of mitochondria in the disease. Further studies are required to elucidate whether mtDNA can be a biomarker of MDD.  相似文献   

4.

Background

Primary tumor recurrence commonly occurs after surgical resection of lung squamous cell carcinoma (SCC). Little is known about the genes driving SCC recurrence.

Methods

We used array comparative genomic hybridization (aCGH) to identify genes affected by copy number alterations that may be involved in SCC recurrence. Training and test sets of resected primary lung SCC were assembled. aCGH was used to determine genomic copy number in a training set of 62 primary lung SCCs (28 with recurrence and 34 with no evidence of recurrence) and the altered copy number of candidate genes was confirmed by quantitative PCR (qPCR). An independent test set of 72 primary lung SCCs (20 with recurrence and 52 with no evidence of recurrence) was used for biological validation. mRNA expression of candidate genes was studied using qRT-PCR. Candidate gene promoter methylation was evaluated using methylation microarrays and Sequenom EpiTYPER analysis.

Results

18q22.3 loss was identified by aCGH as being significantly associated with recurrence (p = 0.038). Seven genes within 18q22.3 had aCGH copy number loss associated with recurrence but only SOCS6 copy number was both technically replicated by qPCR and biologically validated in the test set. SOCS6 copy number loss correlated with reduced mRNA expression in the study samples and in the samples with copy number loss, there was a trend for increased methylation, albeit non-significant. Overall survival was significantly poorer in patients with SOCS6 loss compared to patients without SOCS6 loss in both the training (30 vs. 43 months, p = 0.023) and test set (27 vs. 43 months, p = 0.010).

Conclusion

Reduced copy number and mRNA expression of SOCS6 are associated with disease recurrence in primary lung SCC and may be useful prognostic biomarkers.  相似文献   

5.

Key message

Improving Agrobacterium -mediated transformation frequency and event quality by increasing binary plasmid copy number and appropriate strain selection is reported in an elite maize cultivar.

Abstract

Agrobacterium-mediated maize transformation is a well-established method for gene testing and for introducing useful traits in a commercial biotech product pipeline. To develop a highly efficient maize transformation system, we investigated the effect of two Agrobacterium tumefaciens strains and three different binary plasmid origins of replication (ORI) on transformation frequency, vector backbone insertion, single copy event frequency (percentage of events which are single copy for all transgenes), quality event frequency (percentage of single copy events with no vector backbone insertions among all events generated; QE) and usable event quality frequency (transformation frequency times QE frequency; UE) in an elite maize cultivar PHR03. Agrobacterium strain AGL0 gave a higher transformation frequency, but a reduced QE frequency than LBA4404 due to a higher number of vector backbone insertions. Higher binary plasmid copy number positively correlated with transformation frequency and usable event recovery. The above findings can be exploited to develop high-throughput transformation protocols, improve the quality of transgenic events in maize and other plants.
  相似文献   

6.

Aims

An extra‐long‐range quantitative PCR (LR‐qPCR) method was developed for estimating genome damage to adenovirus 2 caused by UV irradiation. The objective was to use LR‐qPCR as a rapid method to determine adenovirus UV inactivation.

Methods

The LR‐qPCR consisted of two steps: a long‐range PCR (up to 10 kb fragment) and a real‐time, quantitative (q) PCR for quantifying the products of the first PCR. We evaluated LR‐qPCR with adenovirus irradiated with medium‐pressure (MP, polychromatic emission) and low‐pressure (LP, 254 nm) mercury vapour lamps and compared results with cell culture infectivity.

Results

Using LR‐qPCR, a fragment of 6 kb estimated DNA damage in a linear relationship to doses between 0 and 20 mJ cm?2, and a 1‐kb fragment related linearly to doses between 20 and 100 mJ cm?2. The LR‐qPCR results for the 6‐kb fragment were similar to infectivity assays results for adenovirus exposed to MP UV. For adenovirus irradiated with LP lamps, LR‐qPCR results for the shorter fragment size (1 kb) were similar to reduction in viral infectivity. No difference was observed between 10 and 6 kb LR‐qPCR results.

Conclusion

The LR‐qPCR can be used as a tool for estimating DNA damage caused by UV in adenovirus. The LR‐qPCR results were related to reduction in viral infectivity.

Significance and Impact of the Study

The use of LR‐qPCR to determine DNA damage and estimate inactivation of adenovirus 2 from UV disinfection allows for same‐day results compared with >7 days required for cell culture. This accelerates adenovirus inactivation results for the water industry where adenovirus is used as a representative virus for crediting UV systems. This PCR approach provides a framework that can be used for other viral viability assays using the inhibition of amplification of viral nucleic acid after pretreatments, such as propidium monoazide, and for cellular biology studies of DNA damage.  相似文献   

7.
Propidium monoazide is a DNA‐intercalating dye. PMA‐qPCR has been reported as a novel method to detect live bacteria in complex samples. In this study, this method was used to monitor the sterilization effects of UHP, ultrasound and high PEF on Escherichia coli O157:H7. Our results showed that all three sterilization techniques are successful to kill viable E. coli O157:H7 cells under their appropriate conditions. PMA‐qPCR can effectively monitor the amount of DNA released from viable E. coli O157:H7 cells, and the results from PMA‐qPCR were highly consistent with those from plate counting after treatment with UHP, ultrasound and high PEF. The maximal ΔCt between PMA‐qPCR and qPCR obtained in this study was 10·39 for UHP, 5·76 for ultrasound and 2·30 for high PEF. The maximal sterilization rates monitored by PMA‐qPCR were 99·92% for UHP, 99·99% for ultrasound and 100% for high PEF. Thus, PMA‐qPCR can be used to detect the sterilization effect on food and water supplies after treatment with UHP, ultrasound and high PEF.

Significance and Impact of the Study

The reliable detection of viable foodborne pathogenic bacteria in water and food is of great importance in our daily life. However, the traditional bacteria cultivation‐based methods are time‐consuming and difficult to monitor all viable bacteria because of the limitation of cultivation conditions. This study demonstrated that PMA‐qPCR technique is very effective to monitor viable E. coli O157:H7 after sterilization and will help to monitor the viable bacteria in food and water.  相似文献   

8.

Introduction

Tonic immobility (TI) is fear-induced freezing that animals may undergo when confronted by a threat. It is principally observed in prey species as defence mechanisms. In our preliminary research, we detected large inter-individual variations in the frequency and duration of freezing behavior among newly hatched domestic chicks (Gallus gallus). In this study we aim to identify the copy number variations (CNVs) in the genome of chicks as genetic candidates that underlie the behavioral plasticity to fearful stimuli.

Methods

A total of 110 domestic chicks were used for an association study between TI responses and copy number polymorphisms. Array comparative genomic hybridization (aCGH) was conducted between chicks with high and low TI scores using an Agilent 4×180 custom microarray. We specifically focused on 3 genomic regions (>60 Mb) of chromosome 1 where previous quantitative trait loci (QTL) analysis showed significant F-values for fearful responses.

Results

ACGH successfully detected short CNVs within the regions overlapping 3 QTL peaks. Eleven of these identified loci were validated by real-time quantitative polymerase chain reaction (qPCR) as copy number polymorphisms. Although there wkas no significant p value in the correlation analysis between TI scores and the relative copy number within each breed, several CNV loci showed significant differences in the relative copy number between 2 breeds of chicken (White Leghorn and Nagoya) which had different quantitative characteristics of fear-induced responses.

Conclusion

Our data shows the potential CNVs that may be responsible for innate fear response in domestic chicks.  相似文献   

9.

Background  

Quantitative real-time PCR (qPCR) has been the method of choice for the quantification of mRNA. Due to the various artifactual factors that may affect the accuracy of qPCR, internal reference genes are most often used to normalize qPCR data. Recently, many studies have employed computer programs such as GeNorm, BestKeeper and NormFinder in selecting reference genes, but very few statistically validate the outcomes of these programs. Thus, in this study, we selected reference genes for qPCR of liver and ovary samples of yellow (juvenile), migratory (silver) and 11-KT treated juveniles of New Zealand shortfinned eels (Anguilla australis) using the three computer programs and validate the selected genes statistically using REST 2009 software and the Mann-Whitney test. We also tested for the repeatability of use for the best reference genes by applying them to a data set obtained in a similar experiment conducted the previous year.  相似文献   

10.
The phosphatidylinositol 3-kinases (PIK3s) are lipid kinases. Mutation in the exon 9 and exon 20 determined as a predictive factor in anti-HER-2 therapy. In some countries, such as Singapore, China, and Peru, PIK3CA exon 9 E545A was reported to produce the highest rate of mutation. In this research, we developed and optimized PIK3CA exon 9 E545A detection methods with intercalating dye SYBR Green I based on the Tm Shift approach by using prepared recombinant plasmid pGEMT-easy PIK3CA exon 9 and PIK3CA exon 9 E545A. Recombinant plasmid was used due to the limited number of samples.

Methods

Recombinant plasmid was prepared based on manufactured procedures, and this process was then followed by Tm prediction with Poland software, Tm Shift SYBR Green I development, and its characterization (reproducibility, repeatability, sensitivity, qPCR efficiency, and qPCR amplification), respectively.

Result

A method for PIK3CA E545A detection based on TM shift SYBR Green I has been successfully developed. The melting temperature for PIK3CA exon 9 was 78.1 ± 0.1 °C, while that for PIK3CA exon E545A was 80.20 °C. The Tm of mutant was the same as that predicted using Polland Software. The reproducibility of the methods was high, with the coefficient values for inter and intra assays were below 10% with a high sensitivity at 1%, while R2 0.99 and PCR efficiency was 97.75%.

Conclusion

The results presented here demonstrate that the PIK3CA exon 9 E545A detection method has a good sensitivity and efficacy assay, which proves that the method has a high diagnostic accuracy in breast cancer.  相似文献   

11.
Summary A 2 m circle-based chimaeric plasmid containing the yeast LEU2 and the Herpes Simplex Virus type 1 thymidine kinase (HSV-1 TK) genes was constructed. Transformants grown under selective conditions for the LEU2 gene harboured the plasmid at about 15 copies per cell whilst selection for the HSV-1 TK gene led to an increase to about 100 copies per cell. Furthermore, the plasmid copy number could be controlled by the stringency of selection for the TK gene, and the increase in TK gene dosage was reflected in an increase in intracellular thymidine kinase activity. The mitotic stability of the plasmid in high-copy and low-copy number cells was determined. High-copy number cells showed a greater mitotic stability. The relationship of TK expression to plasmid copy number may be useful for the isolation of plasmid copy number mutants in yeast and the control of heterologous gene expression.  相似文献   

12.
13.

Aim

In this work, phenotypic analyses of a Ensifer meliloti fixN1 mutant under free‐living and symbiotic conditions have been carried out.

Methods and Results

Ensifer meliloti fixN1 mutant showed a defect in growth as well as in TMPD‐dependent oxidase activity when cells were incubated under micro‐oxic conditions. Furthermore, haem c staining analyses of a fixN1 and a fixP1 mutant identified two membrane‐bound c‐type cytochromes of 27 and 32 kDa, present in microaerobically grown cells and in bacteroids, as the FixO and FixP components of the E. meliloti cbb3 oxidase. Under symbiotic conditions, fixN1 mutant showed a clear nitrogen fixation defect in alfalfa plants that were grown in an N‐free nutrient solution during 3 weeks. However, in plants grown for a longer period, fixNOQP1 copy was not indispensable for symbiotic nitrogen fixation.

Conclusions

The copy 1 of the fixNOQP operon is involved in E. meliloti respiration and growth under micro‐oxic conditions as well as in the expression of the FixO and FixP components of the cbb3 oxidase present in free‐living microaerobic cultures and in bacteroids. This copy is important for nitrogen fixation during the early steps of the symbiosis.

Significance and Impact of the Study

It is the first time that a functional analysis of the E. meliloti copy 1 of the fixNOQP operon is performed. In this work, the cytochromes c that constitute the cbb3 oxidase operating in free‐living micro‐oxic cultures and in bacteroids of E. meliloti have been identified.  相似文献   

14.

Aims

A molecular method for a rapid detection of viable Legionella pneumophila of all serogroups in tap water samples was developed as an alternative to the reference method (ISO). Legionellae are responsible for Legionnaires’ disease, a severe pneumonia in humans with high lethality.

Methods and Results

The developed method is based on a nutritional stimulation and detection of an increase in precursor 16S rRNA as an indicator for viability. For quantification, DNA was detected by qPCR. This method was compared to the ISO method using water samples obtained from public sports facilities in Switzerland. The sensitivity and specificity were 91 and 97%, respectively, when testing samples for compliance with a microbiological criterion of 1000 cell equivalents per l.

Conclusion

The new method is sensitive and specific for Leg. pneumophila and allows results to be obtained within 8 h upon arrival, compared to one week or more by the ISO method.

Significance and Impact of the Study

The method represents a useful tool for a rapid detection of viable Leg. pneumophila of all serogroups in water by molecular biology. It can be used as an alternative to the ISO method for official water analysis for legionellae and particularly when a short test time is required.  相似文献   

15.

Background  

Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene (SMN1) and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene (SMN2). The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA), a histone deacetylase inhibitor.  相似文献   

16.

Background  

A traditional concept in bacterial genetics states that housekeeping genes, those involved in basic metabolic functions needed for maintenance of the cell, are encoded in the chromosome, whereas genes required for dealing with challenging environmental conditions are located in plasmids. Exceptions to this rule have emerged from genomic sequence data of bacteria with multipartite genomes. The genome sequence of R. etli CFN42 predicts the presence of panC and panB genes clustered together on the 642 kb plasmid p42f and a second copy of panB on plasmid p42e. They encode putative pantothenate biosynthesis enzymes (pantoate-β-alanine ligase and 3-methyl-2-oxobutanoate hydroxymethyltransferase, respectively). Due to their ubiquitous distribution and relevance in the central metabolism of the cell, these genes are considered part of the core genome; thus, their occurrence in a plasmid is noteworthy. In this study we investigate the contribution of these genes to pantothenate biosynthesis, examine whether their presence in plasmids is a prevalent characteristic of the Rhizobiales with multipartite genomes, and assess the possibility that the panCB genes may have reached plasmids by horizontal gene transfer.  相似文献   

17.

Cupriavidus basilensis is a species with diverse metabolic capabilities, including degradation of xenobiotics and heavy metal resistance. Although the genomes of several strains of this species have been sequenced, no plasmid has yet been constructed for genetic engineering in this species. In this study, we identified a novel plasmid, designated pWS, from C. basilensis WS with a copy number of 1–3 per cell and a length of 2150 bp. pWS contained three protein-coding genes, among which only rep was required for plasmid replication. Rep showed no homology with known plasmid replication initiators. Unlike most plasmids, pWS did not have a cis-acting replication origin outside the region of rep. The minimal replicon of pWS was stable in C. basilensis WS without selection. A conjugative C. basilensis/Escherichia coli shuttle vector, pCB5, was constructed using the minimal replicon of pWS. Interestingly, the copy number of pCB5 was flexible and could be manipulated. Enhancing the expression level of Rep in pCB5 by either doubling the promoter or coding region of rep resulted in doubling of the plasmid copy number. Moreover, replacing the native promoter of rep with the lac promoter increased the copy number by over fivefold. Finally, using two different β-galactosidase reporting systems constructed with pCB5, we successfully demonstrated the different regulatory patterns of bph and dmp operons during diphenyl ether (DE) degradation in C. basilensis WS. Thus, this shuttle vector provided an efficient tool for DNA cloning and metabolic engineering in C. basilensis.

  相似文献   

18.
19.
Many autonomously replicating genetic elements exist as multiple copies within the cell. The copy number of these elements is often assumed to have important fitness consequences for both element and host, yet the forces shaping its evolution are not well understood. The 2 μm is a multicopy plasmid of Saccharomyces yeasts, encoding just four genes that are solely involved in plasmid replication. One simple model for the fitness relationship between yeasts and 2 μm is that plasmid copy number evolves as a trade‐off between selection for increased vertical transmission, favouring high copy number, and selection for decreased virulence, favouring low copy number. To test this model, we experimentally manipulated the copy number of the plasmid and directly measured the fitness cost, in terms of growth rate reduction, associated with high plasmid copy number. We find that the fitness burden imposed by the 2 μm increases with plasmid copy number, such that each copy imposes a fitness burden of 0.17% (± 0.008%), greatly exceeding the cost expected for it to be stably maintained in yeast populations. Our results demonstrate the crucial importance of copy number in the evolution of yeast per 2 μm associations and pave the way for future studies examining how selection can shape the cost of multicopy elements.  相似文献   

20.

Background  

Many microbes possess restriction-modification systems that protect them from parasitic DNA molecules. Unfortunately, the presence of a restriction-modification system in a given microbe also hampers genetic analysis. Although plasmids can be successfully conjugated into the enteropathogenic Escherichia coli strain E2348/69 and optimized protocols for competent cell preparation have been developed, we found that a large, low copy (~15) bioluminescent reporter plasmid, pJW15, that we modified for use in EPEC, was exceedingly difficult to transform into E2348/69. We reasoned that a restriction-modification system could be responsible for the low transformation efficiency of E2348/69 and sought to identify and inactivate the responsible gene(s), with the goal of creating an easily transformable strain of EPEC that could complement existing protocols for genetic manipulation of this important pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号