首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究植物功能性状随环境梯度的变异和关联格局, 对于认识不同环境梯度下群落构建和植物适应型具有重要意义。该研究以漓江河岸带不同河段植物群落为研究对象, 调查了研究区内36个样方的物种组成, 测量了样方内42种木本植物的叶面积(LA)、比叶面积(SLA)和木材密度(WD)的功能性状值, 并运用性状梯度分析法对3个功能性状进行群落内(α组分)和群落间(β组分)组分分解及相关性分析。结果表明: (1)群落平均LA表现为中游最小且和下游差异显著, 群落平均WD则表现为中上游显著高于下游, 群落平均SLA在两两河段间均差异显著。(2)不同河段的3个植物功能性状β组分差异显著且实际观测值均小于随机模拟的零模型分布, 但α组分在河岸带不同河段均差异不显著且3个功 能性状的α组分分布范围均小于β组分, 说明在河岸带不同河段的群落构建过程中环境筛选的作用要大于群落内种间的相互作用。(3)性状SLALA在群落间和群落内呈现出实际观测和随机模拟的相关性均较低, 暗示了LASLA各自代表了植物在不同生态策略上的维度; 但SLAWD实际观测值和随机模拟值呈现出较强的负相关关系, 暗示这2个性状对于环境筛选表现出较高的整体趋同适应性, 体现了植物功能性状对群落间环境变异的依赖性大于群落内种间相互作用的依赖性。  相似文献   

2.
《植物生态学报》2017,41(2):231
Stipa tianschanica var. klemenzii steppe is the most typical formation of desert steppe in China. Based on the primary plots data obtained from fieldworks during the growing seasons from 2010 to 2016 as well as some earlier records, we studied the Stipa tianschanica var. klemenzii steppe across China systematically, including the eco-geographical distributions, community characteristics and classifications. The results showed that S. tianschanica var. klemenzii steppe distributed mainly on the Ulan Qab Plateau and western Xilin Gol Plateau. Due to the arid biotope of S. tianschanica var. klemenzii steppe, quantitative characteristics of the assemblage including height, coverage, biomass and species richness were normally lower than that of most Stipa formations in Eurasian steppe region. Moreover, 165 seed plants belonging to 85 genera and 29 families were recorded in the 80 study sites, in which rare species (occurrence frequency <20%) made up 87% of the total plants while common species and constant species could only be found occasionally. Species with the occurrence frequency exceeding 50% included S. tianschanica var. klemenzii, Convolvulus ammannii, Cleistogenes songorica, Allium tenuissimum. In addition, Hemicryptophyte and therophyte were the two dominant life forms, covering 55% and 20% of the species, respectively. As for the ecological type of water, typical xerophytes accounted for 47% of all species which is followed by super-xerophytes and meso-xerophytes. Middle Asian areal-type and east Palaeo-North areal-type were the two major floristic elements, containing 37% and 26% of the species, respectively. Based on the life forms and dominances of the species within the community, S. tianschanica var. klemenzii steppe in China could be classified into 6 association groups, 29 associations.  相似文献   

3.
Aims As the second largest C flux between the atmosphere and terrestrial ecosystems, soil respiration plays a vital role in regulating atmosphere CO2 concentration. Therefore, understanding the response of soil respiration to the increasing nitrogen deposition is urgently needed for prediction of future climate change. However, it is still unclear how nitrogen deposition influences soil respiration of shrubland in subtropical China. Our objectives were to explore the effects of different levels of nitrogen fertilization on soil respiration, root biomass increment, and litter biomass, and to analyze the relationships between soil respiration and soil temperature and moisture.
Methods From January 2013 to September 2014, we conducted a short-term simulated nitrogen deposition experiment in the Rhododendron simsii shrubland of Dawei Mountain, located in Hunan Province, southern China. Four levels of nitrogen addition treatments (each level with three replicates) were established: control (CK, no nitrogen addition), low nitrogen addition (LN, 2 g·m-2·a-1), medium nitrogen addition (MN, 5 g·m-2·a-1) and high nitrogen addition (HN, 10 g·m-2·a-1). Soil respiration was measured by LI-8100 soil CO2 efflux system. At the same time, we measured root biomass increment and litter biomass in each plot.
Important findings Soil respiration exhibited a strong seasonal pattern, with the highest rates found in summer and the lowest rates in winter. Annual accumulative soil respiration rate in the CK, LN, MN and HN was (2.37 ± 0.39), (2.79 ± 0.42), (2.26 ± 0.38) and (2.30 ± 0.36) kg CO2·m-2, respectively. Annual mean soil respiration rate in the CK, LN, MN and HN was (1.71 ± 0.28), (2.01 ± 0.30), (1.63 ± 0.27) and (1.66 ± 0.26) μmol CO2·m-2·s-1, respectively, and it was 17.25% higher in the LN treatment compared with CK (p = 0.06). The root biomass increment was increased by LN, MN, and HN treatments by 18.36%, 36.49% and 61.63%, respectively, compared to CK. The litter biomass was increased by LN, MN, and HN treatments by 35.87%, 22.17% and 15.35%, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature (p < 0.01, R2 is 0.77 to 0.82) and a significant linear relationship with soil moisture at the depth of 5 cm (p < 0.05, R2 is 0.10 to 0.15). The temperature sensitivity (Q10) value of CK, LN, MN and HN plots was 3.96, 3.60, 3.71 and 3.51, respectively. These results suggested that nitrogen addition promoted plant growth and decreased the temperature sensitivity of soil respiration. The increase of root biomass under N addition may be an important reason for the change of soil respiration in the study area.  相似文献   

4.
Aims As an important potential carbon sink, shrubland ecosystem plays a vital role in global carbon balance and climate regulation. Our objectives were to derive appropriate regression models for shrub biomass estimation, and to reveal the biomass allocation pattern and carbon density in Rhododendron simsii shrubland.
Methods We conducted investigations in 27 plots, and developed biomass regression models for shrub species to estimate shrub biomass. The biomass of herb and litterfall were obtained through harvesting. Plant samples were collected from each plot to measure carbon content in different organs.
Important findings The results showed that the power and linear models were the most appropriate equation forms. The D and D2H (where D was the basal diameter (cm) and H was the shrub height (m)) were good predictors for organ biomass and total biomass of shrubs. All of the biomass models reached extremely significant level, and could be used to estimate shrub biomass with high accuracy. It was more difficult to predict leaf and annual branch biomass than stem biomass, because leaf and annual branch were susceptible to herbivores and inter-plant competition. The mean biomass of the shrub layer was 20.78 Mg·hm-2, in which Rhododendron simsii and Symplocos paniculata biomass accounted for 93.63%. Influenced by both environment and species characteristics, the biomass of the shrub layer organs was in the order of stem > root > leaf > annual branch. The root:shoot ratio of the shrub layer was 0.32, which was less than other shrubs in subtropical regions. The relative higher aboveground biomass allocation reflected the adaptation of plants to the warm and humid environment for more photosynthesis. The mean total community biomass was 26.26 Mg·hm-2, in which shrub layer, herb layer and litter layer accounted for 79.14%, 7.62% and 13.25%, respectively. Litter biomass was relatively high, which suggested that this community had high nutrient return. There were significant correlations among aboveground biomass, belowground biomass and total biomass of shrub layer and herb layer. The mean biomass carbon density of the community was 11.70 Mg·hm-2 and the carbon content ratio was 44.55%. The carbon density was usually obtained using the conversion coefficient of 0.5 in previous studies, which could overestimate carbon density by 12.22%.  相似文献   

5.
蔷薇科(Rosaceae)是在中国广泛分布并具有重要经济价值的植物类群, 但蔷薇科资源植物的物种多样性格局及其保护状况尚缺乏较系统的评估。该文旨在: 1)整理中国蔷薇科资源植物名录, 显示其物种多样性格局及热点地区, 并探究这一格局的形成机制。2)评估中国蔷薇科资源植物的保护状况, 为其保护规划提供基础数据。通过广泛收集整理《中国植物志》、省级植物志等资料中关于蔷薇科的记录, 建立了中国蔷薇科物种名录(共914种), 确定了物种的主要经济用途(包括食用植物、园林绿化植物、药用植物和水果种质资源), 并建立了每种植物的高精度分布图。在此基础上, 估算了蔷薇科全部物种及主要资源植物类别的物种多样性格局, 并利用广义线性模型和冗余分析探讨了蔷薇科物种多样性格局与环境的关系。最后将物种分布与中国国家级和省级自然保护区进行叠加分析, 评估了蔷薇科植物的保护现状。结果显示: 1)四川盆地北部、东部和西部山区以及横断山区是中国蔷薇科植物的热点地区。2)蔷薇科植物多样性主要受水分因子影响。3)横断山区、云南东南部和西藏东南部等地是保护薄弱物种集中的区域, 而悬钩子属(Rubus)等类群的保护不足。  相似文献   

6.
《植物生态学报》2017,41(3):301
Aims Soil respiration of the lands covered by biocrusts is an important component in the carbon cycle of arid, semi-arid and dry-subhumid ecosystems (drylands hereafter), and one of the key processes in the carbon cycle of drylands. However, the responses of the rate of soil respiration with biocrusts to water and temperature are uncertain in the investigations of the effects of experimental warming and precipitation patterns on CO2 fluxes in biocrust dominated ecosystems. The objectives of this study were to investigate the relationships of carbon release from the biocrust-soil systems with water and temperature in drylands. Methods Intact soil columns with two types of biocrusts, including moss and algae-lichen crusts, were collected in a natural vegetation area in the southeastern fringe of the Tengger Desert. Open top chambers were used to simulate climate warming, and the soil respiration rate was measured under warming and non-warming treatments using an automated soil respiration system (LI-8150). Important findings Over the whole observational period (from April 2016 to July 2016), soil respiration rates varied from -0.16 to 4.69 μmol·m-2·s-1 for the moss crust-covered soils and from -0.21 to 5.72 μmol·m-2·s-1 for the algae-lichen crust-covered soils, respectively, under different rainfall events (the precipitations between 0.3-30.0 mm). The mean soil respiration rate of the moss crust-covered soils is 1.09 μmol·m-2·s-1, which is higher than that of the algae-lichen crust-covered soils of 0.94 μmol·m-2·s-1. The soil respiration rate of the two types of biocrust-covered soils showed different dynamics and spatial heterogeneities with rainfall events, and were positively correlated with precipitation. The mean soil respiration rate of the biocrust-covered soils without warming was 1.24 μmol·m-2·s-1, significantly higher than that with warming treatments of 0.79 μmol·m-2·s-1 (p < 0.05). By increasing the evaporation of soil moisture, the simulated warming impeded soil respiration. In most cases, soil temperature and soil respiration rate displayed a similar single-peak curve during the diel cycle. Our results show an approximately two hours’ lag between soil temperature at 5 cm depth and the soil respiration rate of the biocrust-covered soils during the diel cycle.  相似文献   

7.
探究地形变化对不同生活型植物叶功能性状的影响有助于深入理解森林群落物种组成的维持特征。该研究以湖北星斗山常绿落叶阔叶混交林为研究对象, 测量了50个样地中224种木本植物的叶面积、叶厚度、叶干质量、叶干物质含量和比叶面积, 运用单因素方差分析揭示了乔木、灌木和木质藤本的叶功能性状变异特征, 并采用偏曼特尔检验分别从群落水平和物种水平分析了地形变化对不同生活型木本植物叶功能性状的影响。研究发现: 不同生活型植物叶性状变异系数分布范围为23.42%-110.45%; 不同生活型之间的植物叶功能性状差异明显。群落水平上, 海拔与乔木叶干质量、灌木叶面积和木质藤本叶厚度显著正相关, 坡度仅对灌木和木质藤本比叶面积具有显著影响, 坡向与灌木叶厚度、叶干质量和比叶面积显著正相关。物种水平上, 海拔比坡度和坡向对植物叶功能性状影响更为显著, 且不同物种对地形变化的敏感度不一致; 在控制空间结构影响后, 地形因子对植物叶功能性状的影响降低。该研究结果表明, 不同生活型植物的叶功能性状对地形变化的响应格局不同, 这可能是星斗山常绿落叶阔叶混交林植物多样性的主要维持机制。  相似文献   

8.
利用热及物质交换原理, 并结合前人研究成果, 在单叶尺度上建立了简单的叶温和水气蒸腾模型。模型通过预设值驱动, 预设值参照干旱区环境及植物叶片特征设置。模拟结果显示: 随气孔阻力的增加, 叶片蒸腾速率降低, 叶温升高; 同一环境下, 具有低辐射吸收率的叶片蒸腾速率和叶温更低, 并且气孔阻力越大, 这种差异越明显。另外, 叶片宽度及风速是影响叶片蒸腾及叶温的重要因子。干旱地区植物生长季节, 风速小于0.1 m·s -1、气孔阻力接近1000 s·m -1时, 降低叶片宽度不仅有利于降低叶片温度, 而且能够降低叶片蒸腾速率, 从而实现保持水分, 增强植物适应高温、干旱的能力。  相似文献   

9.
为探明中亚热带地区常绿阔叶林演替序列土壤呼吸(Rs)的变化趋势及其影响机制, 在福建省建瓯市万木林自然保护区选取演替时间分别为15年(演替初期)、47年(演替中期)和110年(演替后期)三个不同演替阶段, 进行了为期1年的野外原位观测。结果发现: 演替初期、中期和后期的Rs分别为2.38、3.32和3.91 µmol·m -2·s -1, 温度敏感性(Q10值)分别为2.64、1.97和1.79; 与演替初期相比, 演替后期的Rs显著增加64.29%, Q10值显著降低32.30%; 不同演替阶段Rs的季节变化模式相似, 温度和含水量可分别解释季节变化的69.5% (初期)、81.9% (中期)和61.3% (后期); 回归分析发现, Rs与凋落物年归还量、细根生物量和土壤全氮和土壤有机质碳含量显著正相关。表明本研究区内植被演替促进了土壤碳排放, 降低了土壤呼吸的温度敏感性; 土壤碳输入增加、养分含量的提高和细根生物量增大是中亚热带常绿阔叶林Rs随演替进程逐渐增大的主要原因。  相似文献   

10.
为了揭示气候变暖背景下高寒灌丛土壤氮转化过程, 该文研究了青藏高原东缘窄叶鲜卑花(Sibiraea angustata)灌丛生长季节土壤硝态氮和铵态氮含量对增温和去除植物的响应。结果表明: 窄叶鲜卑花灌丛土壤硝态氮和铵态氮含量具有明显的季节动态。整个生长季节, 土壤硝态氮含量呈先增加后降低的趋势, 而铵态氮含量均表现为一直增加的趋势。在生长季初期和中期, 各处理土壤硝态氮含量均显著高于铵态氮含量, 而在生长季末期土壤硝态氮含量均显著低于铵态氮含量, 说明该区域土壤氮转化过程在生长季初期和中期以硝化作用为主, 而在生长季末期以氨化作用为主。不同时期土壤硝态氮和铵态氮含量对增温和去除植物的响应不同: 增温对硝态氮的影响主要发生在生长季中期和末期, 且因植物处理的不同而有显著差异, 增温仅在生长季中期使不去除植物样方铵态氮含量显著升高。去除植物对土壤硝态氮的影响仅表现在对照样方(不增温), 去除植物显著提高了生长季初期和中期土壤硝态氮含量, 显著降低了生长季末期土壤硝态氮含量; 同时去除植物显著降低了增温样方生长季中期土壤铵态氮含量。灌丛植被在生长季初期和中期可能主要吸收土壤硝态氮, 其吸收过程不受土壤增温的影响。  相似文献   

11.
《植物生态学报》2013,37(10):922
火是继土壤、水分、温度之后, 塑造地表植被的主要力量。该文以2010年“12·5”冬草场火烧事件为背景, 通过对比川西亚高山草地火烧区域和未火烧区域火后第一年植被群落结构和牧草质量, 探讨亚高山草地植被对冬季火烧的响应机制。通过物种多样性分析、双向指示种分析(TWINSPAN)和干重等级法(dry-weight-rank)分析发现, 冬季火烧未改变植被的生物多样性、均匀度和物种丰富度, 却改变了植被群落结构的物种组成。冬季火烧导致一年生禾草、一年生杂草、灌木等3种生活型植物的数量和生物量增加; 多年生杂草数量减少, 生物量增加; 多年生禾草数量和生物量减少。冬季火烧也极大地减少了可食禾草的比例, 增加了各种杂草的生物量比例。此次火烧事件降低了细柄草(Capillipedium parviflorum)和早熟禾(Poa sp.)等可食禾草的竞争能力, 增加了一些杂草(如火绒草(Leontopodium leontopodioides)、白莲蒿(Artemisia sacrorum)、草玉梅(Anemone rivularis)等)在资源竞争中的相对优势, 最终表现为火后牧草的可食性下降。  相似文献   

12.
《植物生态学报》1958,44(6):687
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林Q10季节和年际变化规律的研究, 但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足, 已有结果缺乏一致结论。该研究通过整合已发表论文, 构建了中国森林生态系统年尺度Q10数据集, 共包含399条记录、5种森林类型(落叶阔叶林(DBF)、落叶针叶林(DNF)、常绿阔叶林(EBF)、常绿针叶林(ENF)、混交林(MF))。分析了不同森林类型Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示, 1) Q10介于1.09到6.24之间, 平均值(±标准误差)为2.37 (± 0.04), 且在不同森林类型之间无显著差异; 2)当考虑所有森林类型时, Q10随纬度、海拔、土壤有机碳含量(SOC)和土壤全氮含量(TN)的增加而增大, 随经度、年平均气温(MAT)、平均年降水量(MAP)的增加而减小。气候(MATMAP)和土壤(SOCTN)因素间存在相互作用, 共同解释了33%的Q10空间变异, 其中MATSOCQ10空间变异的主要驱动因素; 3)不同类型森林Q10对气候和土壤因素的响应存在差异。在DNF中Q10MAP的增加而减小, 而其他类型森林中Q10MAP无显著相关性; 在EBF、DBF、ENF中Q10TN的增加而增大, 但Q10TN的敏感性在EBF中最高, 在ENF中最低。这些结果表明, 尽管Q10有一定的集中分布趋势, 但仍有较大范围的空间变异, 在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和Q10对环境因素的响应随森林类型而变化, 在气候变化情景下, 不同森林类型间Q10可能发生分异。因此, 未来的碳循环-气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。  相似文献   

13.
《植物生态学报》2018,42(5):526
长期以来, 气候与植物物候关系的研究大多基于线性模型, 但植被物候对气候变化的响应可能是非线性的。该文利用非线性模型——生存分析模型来分析时间序列中过去事件(气候因子)对目的变量(物候)的作用: 用生存分析模型分析了春季气温和降水量对内蒙古草地、青藏高原草甸和欧洲地区木本植物返青期的影响。其中, 内蒙古与青藏高原的物候信息来自遥感数据, 欧洲地区物候信息为实测数据。蒙特卡洛方法用于拟合模型参数。结果表明: 生存分析模型适合对上述不同研究对象的物候影响因素进行分析, 并能模拟非线性效应; 在内蒙古草地, 春季气温和降水对春季返青有很大的影响, 而青藏高原草甸和欧洲地区木本植物返青期对春季降水响应较小, 对春季气温变化的响应随Holdridge干燥度指数上升而下降; 在预测返青期时发现: 春季平均气温提高1 ℃会导致上述地区返青期提前1-6天; 而春季气温与降水的增加会导致返青期发生明显的非线性变化, 这种非线性效应无法基于线性模型模拟出来。结果说明生存分析模型既能用于分析不同尺度下植物物候与气候的关系, 也能用于模型预测, 尤其适合探讨大幅度气候变化对物候的非线性影响。  相似文献   

14.
15.
《植物生态学报》2017,41(5):519
Aims We aim to evaluate the water sources of typical riparian arbor species (Populus euphratica) and shrub species (Tamarix ramosissima), and analyze the spatial and temporal dynamics of plant water source in Ejina Delta, the lower reaches of the Heihe River, China.Methods Eight sampling sites were selected in the riparian zones along the East River and West River in Ejina. The plant xylem water, soil moisture, rainwater, stream water and groundwater were taken and pretreated during the growing season in 2015-2016, and the stable oxygen isotope ratio (δ18O) for each water sample was measured. The δ18O of plant xylem water and soil moisture were compared to estimate the dominant depth of root water uptake, and the linear-mixed model called “IsoSource” were applied to determine plant water sources and quantify their proportions.Important findings This study indicated that the main recharge sources for P. euphratica and T. ramosissima were stream water and groundwater. The contributions of rain water to them was negligible due to the limited amount and the shallow infiltration depth of local rainfall. As affected by groundwater level fluctuation, soil physical properties, as well as lateral and vertical recharge of stream water on soil moisture, the dominant depth of root water uptake spatially varied. However, the relative contributions of stream water or groundwater to plant water sources did not change significantly across space. Populus euphratica used more stream water (68%), while T. ramosissima used more groundwater (65%). Plant water sources were sensitive to environmental flow controls. The contributions of stream water to the water sources of the two species went up to 84% and 48% for P. euphratica and T. ramosissima respectively during the discharge period, but dropped to 63% and 30% during the non-discharge period. On the other hand, the contributions of groundwater decreased to 16% and 52% during the discharge period, but increased to 37% and 70% during non-discharge period. It is noteworthy that the high similarity of δ18O between stream water and groundwater due to extensive water exchange in the riparian zone made increase the uncertain in quantifying plant water sources.  相似文献   

16.
《植物生态学报》1958,44(8):828
研究植物功能性状变异以及不同性状之间的关系, 有助于了解植物对环境的适应策略, 对揭示群落构建和生物多样性维持机制具有重要意义。本研究以桂林岩溶石山青冈群落18种主要木本植物为研究对象, 采用单因素方差分析、混合线性模型以及Pearson相关分析和主成分分析等方法探讨了不同生长型和生活型物种的9个枝、叶功能性状(叶绿素含量、叶片厚度、叶面积、叶干质量、比叶面积、叶干物质含量、叶组织密度、小枝干物质含量和小枝组织密度)的变异与关联。结果表明: (1) 9个功能性状的变异程度不同, 叶面积和叶干质量的种内和种间变异系数最大, 小枝干物质含量和小枝组织密度的种内和种间变异系数最小。(2)在生长型水平上, 乔木、灌木和木质藤本的绝大部分功能性状差异显著。(3)对于不同生活型植物, 除叶面积和比叶面积为落叶植物显著大于常绿植物外, 其余7个功能性状皆为常绿植物显著大于落叶植物。(4)不同生长型和生活型植物功能性状的种内和种间变异大小存在差异, 除部分植物功能性状在一些功能型上表现为种内变异高于种间变异, 其余功能性状的种间变异皆高于种内变异。(5)各功能性状之间关系在个体水平和物种水平大致相同, 但是个体水平上的显著相关比例高于物种水平。研究发现, 植物功能性状的种间变异基本高于种内变异, 但种内变异不容忽略。此外, 不同生长型和生活型物种采取不同的生态策略来适应喀斯特生境。今后的研究应基于个体水平采样并结合环境因子从生长型和生活型等不同功能型角度上深入探究植物功能性状在种内和种间等不同尺度上的变异与关联。  相似文献   

17.
The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co‐occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales. Exploring the relationship between soil characteristics and plant traits is a step toward understanding the filtering hypothesis in determining plant distribution at local scale. Toward this end, we mapped all individual trees (diameter >1 cm) in a one‐ha subtropical forest of China in 2007 and 2015. We measured topographic and detailed soil properties within the field site, as well as plant leaf functional traits and demographic rates of the seven most common tree species. A second one‐ha study plot was established in 2015, to test and validate the general patterns that were drawn from first plot. We found that variation in species distribution at local scale can be explained by soil heterogeneity and plant functional traits. (From first plot). (1) Species dominant in habitats with high soil ammonium nitrogen and total phosphorus tended to have high specific leaf area (SLA) and relative growth rate (RGR). (2) Species dominant in low‐fertility habitats tended to have high leaf dry matter content (LDMC), ratio of chlorophyll a and b (ratioab), and leaf thickness (LT). The hypothesis that functional traits are selected in part by environmental filters and determine plant distribution at local scale was confirmed by the data of the first plot and a second regional site showed similar species distribution patterns.  相似文献   

18.
《植物生态学报》2016,40(10):991
Aims Understanding ecological implications of plant functional traits is helpful in exploring community assembly under different environments of nature and human disturbances, and then to reveal the maintenance mechanism of the ecosystem services. By analyzing vegetation and soil data derived from field observations in Leymus chinensis steppe of Xilin River Basin in Nei Mongol, we aimed to explore the responses of plant functional traits to changing soil nutrients at different degradation stages. Methods We observed 69 plots for both plant community structure and soil attributes using quadrat and soil-drilling methods. Five plant functional traits, namely the specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon to nitrogen ratio (C:N), leaf lignin content (LLC), and maximum height (MH), were measured for each plot. We also tested soil attributes, such as total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and organic carbon (OC). The sixty-nine communities were classified into four groups (undegraded L. chinensis + forbs, slightly degraded L. chinensis + Stipa sp., moderately degraded L. chinensis + Cleistogenes squarrosa, and heavily degraded L. chinensis + Artemisia frigida) using TWINSPAN software. The relationships between plant functional traits and soil nutrient variables were analyzed for the four community groups using the Pearson’s correlation test with SPSS 21.0 software. Important findings (1) The soil nutrients decreased with the grassland degradation process and there were significant differences in TN and TP between the undegraded L. chinensis + forbs and heavily degraded L. chinensis + A. frigida communities; (2) plant functional traits also showed strong differences between the degradation stages. MH and C:N decreased with degradation. A significant difference was observed in MH between the undegraded L. chinensis + forbs and slightly degraded L. chinensis + Stipa sp. communities. The difference in C:N was also significant between the undegraded L. chinensis + forbs and heavily degraded L. chinensis + A. frigida communities; (3) the effects of soil nutrients on plant functional traits changed with grassland degradation. AN was negatively correlated with MH, LLC, and C:N in the slightly degraded L. chinensis + Stipa sp. community. In the moderately degraded L. chinensis + C. squarrosa community, those three traits mentioned above showed significantly positive correlations with TP; (4) while analyzing the degraded grassland, different relationships between plant functional traits were found. In the slightly degraded L. chinensis + Stipa sp. community, LLC was positively correlated with all other traits. Moreover, positive correlations also occurred between C:N and MH, C:N and LDMC, and C:N and LLC. In the heavily degraded L. chinensis + A. frigida community, all traits demonstrated the most significantly positive correlations.  相似文献   

19.
针对环境因子与草原植物叶绿素含量的联动是否关系到植物生活型优势的问题, 该研究以锡林浩特典型草原为研究区, 选取2020年7月实测的11个样地50种植物共185个牧草样品的叶绿素含量, 运用相关分析、单因素方差分析、冗余分析(RDA)、逐步回归分析和通径分析等方法, 系统性地分析了多环境因子对草原植物不同生活型叶绿素指标的影响, 进而分析植物竞争优势形成的潜在驱动机制。研究结果表明: 1)典型草原区植物叶绿素a、叶绿素b含量均与总叶绿素含量呈极显著正相关关系, 相关系数分别为0.807和0.936, 草原植物总叶绿素含量受叶绿素b含量的影响程度更大; 2)草原植物4类生活型的叶绿素a、叶绿素b和总叶绿素含量均为小/半灌木>多年生禾草>一/二年生植物>多年生杂类草; 3)环境因子对植物生活型叶绿素含量的解释程度存在差异, RDA显示环境因子对小/半灌木的叶绿素含量解释程度最大(28.0%), 其次为一/二年生植物(18.3%)和多年生杂类草(17.7%), 多年生禾草各项叶绿素指标的解释度最低(12.7%); 4)植物生活型各叶绿素指标受多种环境因子的影响, 回归分析显示小/半灌木的叶绿素b含量受到土壤有机碳含量和大气相对湿度的影响, 总叶绿素含量主要受到大气相对湿度的影响, 多年生杂类草叶绿素b含量主要受到地表温度的影响, 一/二年生植物的叶绿素a、叶绿素b、总叶绿素含量主要受到土壤pH的影响; 5)在草原生境中, 通径分析的综合研究显示植物叶绿素a含量主要受到土壤环境因子的影响, 植物叶绿素b和总叶绿素含量主要受到大气环境因子的影响, 相比较而言, 多年生禾草不易受环境因子的牵动, 成为更能忍受外界环境变化的植物种类, 因此, 在群落演替进化中这类植物逐渐占据优势地位。  相似文献   

20.
《植物生态学报》2017,41(4):430
Aims Tree mortality is an important ecological process in forest ecosystems. The aims of this study were to determine how tree mortality influences the spatial patterns and interspecific associations of plant species, and what are the causes of tree mortality in a 1 hm2 permanent plot in Baotianman National Nature Reserve, Nanyang City, Henan Province.
Methods We conducted field investigations in the plot and used spatial point pattern analysis to examine the spatial patterns and interspecific associations of 17 species prior to and following mortality.
Important findings (1) Most of the species in the study plot showed an aggregated distribution both pre- and post-mortality. However, the number of species showing aggregated distribution decreased and the number of species showing random distribution increased following the mortality event. (2) Most species were positively associated with Quercus aliena var. acuteserrata both pre- and post-mortality, while some had no apparent association. Following tree mortality, on fine scales, the number of species with positive associations increased, and the number of species with negative associations decreased. (3) Tree mortality was in consistency with the random death hypothesis. The interspecific associations of four species with Q. aliena var. acuteserrata completely changed following death. For most species, the spatial patterns and the interspecific association with Q. aliena var. acuteserrata either changed at minor scales or did not change. The variations in spatial patterns or interspecific associations were inconsistent among species. (4) The dead trees of Q. aliena var. acuteserrata were significantly associated with the living trees in 13 species, but the associations between dead and living trees were not in agreement with the changes in interspecific association following mortality. Only five living tree species competed with the dead trees of Q. aliena var. acuteserrata, and the competition between each of these species and Q. aliena var. acuteserrata intensified after individual death. Tree mortality is the result of a variety of factors. Although the tree mortality in the study plot was in accordance with the random death hypothesis, there were also a few individuals which were dead from competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号