共查询到20条相似文献,搜索用时 0 毫秒
1.
《植物生态学报》2015,39(6):621
Many grasses in the subfamily Pooideae develop symbioses with Neotyphodium fungal endophytes, which exist widely in nature. The stably symbiotic relationship not only ensures accessible nutrients required by Neotyphodium fungal endophytes, but also significantly increases the resistance of host grasses to biological stresses through the production of secondary metabolites. Previous studies show that infected grasses with endophytic fungi have prominently enhanced resistance to pests, plant diseases, companion plants and other biological stresses. Grass endophytic fungi show remarkable resistant to at least 79 species of pests from three classes; arachnida, nematode and insecta, and to at least 22 species of pathogenic fungi. Although the biotechnological application of endophytic fungi in grass breeding for variety selection and quality improvement has progressed well, opportunities remain for further exploring the use of fungal endophytes among different host grasses coupled with the examination of genetic stability of Neotyphodium in novel host grasses. In the future application of endophytic fungi as a bio-control method, researchers should not only consider specificities of host grasses, but also need to have comprehensive analysis and knowledge about the mutual relationships among grasses, endophytic fungi and ecological environments, which will help use endophytic fungi to better serve humanity. 相似文献
2.
《植物生态学报》2021,44(12):1224
细叶云南松(Pinus yunnanensis var. tenuifolia)是分布于滇、黔、桂交界处的一个云南松变种, 其自然生境独特, 属典型的干热河谷气候, 具有重要的生态、经济价值。该研究以分布于南盘江-红水河流域沿线的8个细叶云南松天然种群为材料, 采用描述性统计及巢式方差分析比较种群间及种群内种实性状差异, 运用Pearson相关及典型相关分析探究种实性状与地理气象因子间的相关性, 最后对种群进行主成分聚类和Mantel检验, 揭示其种实性状地理变异模式。结果显示: 细叶云南松11个种实性状在种群间和种群内都存在极显著差异(p < 0.001), 变异丰富。种实性状以种群内变异为主(平均表型分化系数VST = 18.65%), 球果性状种群间分化(24.22%-39.88%)高于种子及种翅性状(4.14%-13.80%), 表明球果性状受到更强的环境选择。尽管部分相关系数未达显著水平, 但整体上种实性状与经纬度、年平均气温呈正相关关系, 与相对湿度、年降水量呈负相关关系, 表明细叶云南松种实性状受到地理隔离、湿度和温度的协同选择作用, 使其能较好适应干热环境。主成分聚类将参试种群划分为3类, 位于东部的罗甸伍家坟(WJ)、罗甸大亭(DT)种群聚为一类, 其种实形态较大, 位于西南部的兴义坝汪(BW)种群单独一类, 其种实形态较小, 其他种群聚为一类, 种实形态介于前两类之间。总体上, 种实性状值有自西向东递增的趋势。Mantel检验表明, 参试种群存在明显的空间结构, 主要体现为渐变群模式。 相似文献
3.
《植物生态学报》2017,41(10):1091
Aims Our objectives were to determine the phenotypic variations, adaption and distribution patterns in seven natural Amygdalus pedunculata populations.Methods We analyzed 14 phenotypic traits from 120 individuals in seven populations of A. pedunculata by variance analysis, correlation analysis, and cluster analysis.Important findings Results showed that there were plentiful phenotypic variation within and among populations. In particular, the phenotypic variation within population was 40.91%, higher than that among populations (35.29%), which indicated that the phenotypic variation within population was the main source of the phenotypic variation in A. pedunculata. Mean differentiation coefficient was 45.90%, and mean coefficient of variation of 14 traits was 15.59%, ranged from 9.39% to 31.98%. Mean annual temperature, latitude, length of frost-free period, longitude and altitude appear to be prominent ecological factors influencing phenotypic traits. Mean annual temperature and length of frost-free period were key indicators to phenotypic of A. pedunculata in different site conditions. According to principal component analysis and unweighted pair-group method with arithmetic means (UPGMA) cluster analysis, the seven populations of A. pedunculata could be divided into two groups. In mountainous region, A. pedunculata’s leaf blade was usually rotund to oblong, fruit nearly spherical shape with shorter fruit stem, stone was usually ovoid to spherical shape. In contrast, in sandy region, leaf blade was long oval to ovate-lanceolate, fruit and stone was usually flat ovoid with longer fruit stem. Our results provide critical information for the resource collection and breeding of this ecologically important species. 相似文献
4.
长期受到生长环境影响而形成的遗传变异对植物生长发育有着显著的影响。叶片是植物对环境变化最敏感的器官, 了解叶片解剖结构在不同环境中产生的适应性变异是探索植物对环境适应的基础。同质园试验是研究遗传与环境因素对植物生长代谢等影响的一种有效方法, 该研究利用同质园试验排除了环境梯度的影响, 通过常规石蜡切片、多重比较、相关性分析、一般线性模型分析等方法, 对7个不同种源地的蒙古莸(Caryopteris mongholica)叶片解剖结构及其影响因素进行了定量比较。结果表明, 7个种源地的蒙古莸叶片均为等面叶, 无海绵组织分化, 其上表皮细胞较下表皮细胞厚, 上栅栏组织较下栅栏组织厚; 叶片各解剖结构参数间存在显著的自相关性, 不同种源叶片解剖结构存在显著差异: 随种源地年平均气温升高, 叶厚度、栅栏组织厚度呈增大趋势, 其中, 最西南部的阿左旗种源蒙古莸叶片的上下栅栏组织、叶厚度及叶片结构紧密度值均最大, 表现出明显的抗旱特征。种源地经纬度、气温、降水等对解剖结构指标有显著的影响, 其解释程度为34.09%-81.43%。同质园试验说明, 种源地气候差异驱动的遗传变异是引起不同种源叶片解剖结构差异的重要因素。 相似文献
5.
《植物生态学报》2016,40(12):1238
AimsElymus nutans is one of the dominant plant species in alpine meadow. Purpose of this research was to study the effects of nitrogen and silicon application on leaf nitrogen content and net photosynthetic rate in this species to provide scientific basis for fertilization practice in alpine meadow.MethodFour levels nitrogen combined with four levels silicon was applied to E. nutans plants in the alpine meadow. Leaf nitrogen content and net photosynthetic rate of E. nutans were measured.Important findings The results showed that there was a significant improvement in leaf nitrogen content and net photosynthetic rate of the E. nutans with nitrogen or silicon application alone; However, there was a significant interaction between nitrogen and silicon treatments on leaf nitrogen content and net photosynthetic rate; Combining with the three different levels nitrogen, low level silicon (Si1) application did not increase leaf nitrogen content and net photosynthetic rate, but middle level silicon (Si2) could significantly increase the leaf nitrogen content; Combining with the low (N1) or middle (N2) level nitrogen, middle level silicon (Si2) application could significantly increase the net photosynthetic rate; Compared with that control without fertilization, the middle level nitrogen combined with the same level silicon treatment had the highest average of leaf nitrogen content and net photosynthetic rate, which increased by 119.99% and 85.70%, respectively. This study indicated application of nitrogen combined with silicon application enhanced leaf nitrogen content and net photosynthetic rate of E. nutans, and 8 g·m-2silicon application had the best result among other treatments. 相似文献
6.
《植物生态学报》2018,42(2):209
随着叶片功能性状研究的不断深入, 通过简单易测量的叶片指标, 同时探究植物生活史权衡对策和估算林分生产力的研究需求日益增长, 例如叶干质量比(LDMC)和比叶面积(SLA)的相互转换。杉木(Cunninghamia lanceolata)是亚热带重要的常绿针叶树种, 基于LDMC对杉木SLA进行估算, 能够为核算SLA提供途径, 为机理解释和生产估算构建连接途径, 为小区域到大尺度、精算到估算搭建桥梁。该研究在湖南会同和河南信阳两个杉木生长区, 对处于不同小生境(坡向、坡位和冠层深度)以及不同生活史(林龄和叶龄)的叶片进行抽样和采集, 通过测得不同叶龄的单叶LDMC和SLA, 初步探究在不同因子下两个性状值的分布差异, 进一步基于LDMC构建SLA估算模型并讨论以叶龄为差分因子对模型的影响。结果表明: 1)杉木SLA平均值为(103.15 ± 69.54) cm 2·g -1, LDMC为0.39 ± 0.11; 2)杉木LDMC和SLA可用非线性模型进行估算, 模型符合估算要求; 3)其中一年生叶的拟合效果最好, 老叶(大于二年生叶)的拟合优度较低, 老叶较低的SLA (52.28-75.74 cm 2·g -1)可能暗示LDMC的变化保持相对独立性。该研究基于杉木LDMC的SLA估算模型可信且有效, 且不同叶龄对LDMC和SLA的影响可能预示着杉木叶片的响应敏感性和生活史权衡策略。 相似文献
7.
《植物生态学报》1958,44(8):875
温度与植物种类是生态系统土壤微生物群落组成与结构的重要影响因子。气候变暖背景下, 不同树种及树种互作对土壤微生物群落产生的影响仍不清楚。该文以西南亚高山针叶林主要建群种粗枝云杉(Picea asperata)和岷江冷杉(Abies faxoniana)为研究对象, 采用红外加热器模拟增温, 通过不同种植方式(云杉、冷杉单种和二者混种, 以及裸地对照), 研究不同物种及增温对土壤微生物磷脂脂肪酸(PLFAs)含量与群落结构的影响。结果表明: (1)无论增温与否, 与裸地相比, 云杉与冷杉单种均显著增加了土壤微生物群落主要类群及总PLFAs含量, 而混种仅在非增温条件下增加了微生物群落PLFAs含量; 另一方面, 增温显著促进了裸地真菌(F)和云杉根区革兰氏阴性菌(GN)的生长, 但对冷杉与冷杉-云杉混种小区微生物群落具有显著的抑制作用。(2)主成分分析(PCA)表明, 非增温条件下, 植物种植对土壤微生物群落组成的影响更为明显。非增温情况下云杉、冷杉单种和混种均对微生物群落结构有显著影响, 显著降低了土壤革兰氏阳性菌/阴性菌(GP/GN), 增加了土壤真菌细菌比(F/B)(64.29%-35.71%), 而增温时, 仅冷杉单种对GP/GN和F/B有显著影响。(3) PLFAs含量与土壤碳含量显著正相关, 微生物群落结构(F/B)则与土壤pH及无机氮含量有显著相关关系。以上结果说明, 在非增温情况下, 无论单种还是混种均有利于土壤微生物生长, 但在增温情况下混种对微生物群落PLFAs含量无显著影响, 两个物种对微生物群落结构的影响在增温条件下也有减弱的趋势。 相似文献
8.
树木是森林生态系统的基本组成, 其生长受气象因子的影响, 基于此, 该研究通过监测樟子松(Pinus sylvestris var. mongolica)的径向生长, 研究樟子松生长日动态规律、季节动态规律及其与气象因子的关系, 探讨河北塞罕坝地区樟子松森林生态系统对气候变化的响应机制。此外, 以往研究树木生长大多数基于树轮年代学, 缺少短期树木径向生长动态的研究。该研究利用径向生长记录仪监测河北塞罕坝机械林场内樟子松连续3年(2016-2018)的树干径向动态变化。结果表明: 由于树干的水分吸收与蒸腾作用, 樟子松树干径向昼夜变化呈现季节性规律, 可划分为4个阶段: 春季萌动期、夏季生长期、秋冬交替期和冬季休眠期。塞罕坝樟子松树干径向生长开始于每年4月初; 4月初至5月中旬为水分恢复阶段; 5月中旬至7月中旬为快速生长阶段; 7月中旬至10月中旬为缓慢生长阶段; 10月中、下旬生长趋于停止, 并有树干径向收缩现象。以一天为时间尺度, 在快速生长阶段(5月初至7月中旬)樟子松径向生长主要受空气温度的影响; 缓慢生长阶段(7月中旬至10月下旬)降水量、空气温度均影响樟子松径向生长。以15天为时间尺度, 温度对樟子松径向生长的影响显著。结果显示樟子松的生长动态规律及其影响因子, 为未来樟子松生理研究提供参考时间节点, 同时在极端低温与干旱的情况下, 为半干旱地区樟子松的生长状态提供参考依据。 相似文献
9.
《植物生态学报》2016,40(11):1145
Aims How alien invasive plants and co-occurring native plants utilize nutrients is one of major issues in invasion ecology. Foliar nitrogen (N) and phosphorus (P) contents and stoichiometry can elucidate the uptake ability and limitation status of nutrients in plants, which provides basic knowledge for understanding the invading ability and co-occurrence or disappearance of plants.
Methods Based on typical alien invasive plants (Chromolaena odorata, Ageratina adenophora) and native plants in southwestern China, this study focused on strategies of N and P utilization among invasive plants and native plants under different invasion conditions. The species compositions, aboveground biomass, leaf N and P contents and leaf N:P were investigated for plants in plots with no invasion and with different invasion extents (estimated by the plot-based percentage of invaders’ biomass in total community) at Mt. Kongming in Xishuangbanna region, Yunnan Province, China.
Important findings The species number decreased significantly with the invasion extent of both C. odorata and A. adenophora, although the aboveground biomass was greatly enhanced. Leaf N and P contents did not differ between the two studied invaders, but they showed significantly higher N and P levels than both co-occurring and only native species (p < 0.05). Besides, leaf N and P contents of invaders increased with the invasion extent, and leaf N of native plants also showed an increasing trend with the invasion extent. When the influence of invasion was checked for the same species, leaf P contents decreased, whereas leaf N and N:P increased for most native plants under invasion. Based on the absolute foliar N and P contents, N:P values, we inferred that native plants were still limited by N, although N availability might be enhanced by invasion. Both invasive plants had leaf N:P values lower than 10, suggesting a higher P uptake relative to N uptake. All above results highlighted a higher N and P uptake of typical alien invasive plants in southwestern China. 相似文献
Methods Based on typical alien invasive plants (Chromolaena odorata, Ageratina adenophora) and native plants in southwestern China, this study focused on strategies of N and P utilization among invasive plants and native plants under different invasion conditions. The species compositions, aboveground biomass, leaf N and P contents and leaf N:P were investigated for plants in plots with no invasion and with different invasion extents (estimated by the plot-based percentage of invaders’ biomass in total community) at Mt. Kongming in Xishuangbanna region, Yunnan Province, China.
Important findings The species number decreased significantly with the invasion extent of both C. odorata and A. adenophora, although the aboveground biomass was greatly enhanced. Leaf N and P contents did not differ between the two studied invaders, but they showed significantly higher N and P levels than both co-occurring and only native species (p < 0.05). Besides, leaf N and P contents of invaders increased with the invasion extent, and leaf N of native plants also showed an increasing trend with the invasion extent. When the influence of invasion was checked for the same species, leaf P contents decreased, whereas leaf N and N:P increased for most native plants under invasion. Based on the absolute foliar N and P contents, N:P values, we inferred that native plants were still limited by N, although N availability might be enhanced by invasion. Both invasive plants had leaf N:P values lower than 10, suggesting a higher P uptake relative to N uptake. All above results highlighted a higher N and P uptake of typical alien invasive plants in southwestern China. 相似文献
10.
《植物生态学报》2017,41(11):1199
Aims To investigate the effects of dew on plants, we conducted the experiment to determine the physiological characteristics and leaf structures of Leymus chinensis and Agropyron cristatum in response to increasing dew under drought stress.Methods Four treatments (no dew, three times dew and five times dew per week under drought stress, and well-watering) were designed to examine leaf relative water content, water potential, net photosynthetic rate, water use efficiency, biomass, and leaf structures of L. chinensis and A. cristatum. Important findings There was a significant increase in the relative water content and water potential by simulated dew increase for two plants species under drought stress (p < 0.05). For A. cristatum, simulated dew increase significantly enhanced the net photosynthetic rate, stomatal conductance, and transpiration rate of plants under drought stress (p < 0.05). On the other hand, there was no significant difference in the stomatal conductance and transpiration rate for L. chinensis among treatments. Simulated dew increase improved the aboveground biomass and root biomass of two species. The ratio of yellow leaves to the total leaves was decreased by simulated dew increase for two species. Dew increase also protected leaf structures against the drought stress, suggesting that the dew increase can slow down the death process of leaves resulted from drought stress. Therefore, the study demonstrated that dew increased the available water for the leaves of L. chinensis and A. cristatum grown in the drought stress and thus had positive effects on the photosynthesis, water physiology and plant development. 相似文献
11.
《植物生态学报》2015,39(11):1071
AimsOur objectives were to determine differences in fine root production, its relationships with environmental factors, and its diameter- and depth-related distribution patterns between plantations of two subtropical tree species differing in successional stages. MethodsPlantation forests of an early-successional species, Pinus massoniana, and a late-successional species, Castanopsis carlesii, in Sanming, Fujian Province, were selected. Fine root production was monitored for two years using minirhizotrons methods. At the same time, environmental factors including monthly air temperature, monthly precipitation, soil temperature, and soil water content were determined.Important findings 1) During the two years, there was significant difference in annual fine root length production between these two forests, with annual production of P. massoniana plantation nearly four times that of C. carlesii plantation. Fine root length production under both forests showed significant monthly dynamics and maximized in summer, a season when most of fine roots were born. 2) Roots of 0-0.3 mm in diameter accounted for the largest proportion of total fine root length production. Fine roots were concentrated mostly at the 0-10 cm soil depth in P. massoniana plantation, but happened mostly at the 30-40 cm soil depth in the C. carlesii plantation. 3) Partial correlation analysis suggested that, monthly fine root production of both forests was significantly correlated with both air temperature and soil temperature, while it had no significant correlation with either rainfall or soil water content. Linear regression analysis illustrated that monthly fine root production was more correlated with air temperature and soil temperature in the P. massoniana plantation than in the C. carlesii plantation. It was concluded that fine root production in the early-successional P. massoniana plantation was not only much higher in amount, but also more sensitive to temperature, than that in the late-successional C. carlesii plantation. 相似文献
12.
为探讨土壤碳氮比(C:N)对苹果(Malus pumila)植株生长和碳氮分配特性的影响, 采用碳氮双标记示踪技术, 以二年生平邑甜茶(Malus hupehensis)幼苗为试验材料, 研究了6个不同土壤C:N处理(T1-T6分别为4.70、9.78、14.70、19.96、25.60和28.83)下平邑甜茶的生长状况和氮素吸收、利用分配以及碳水化合物的运转特性。结果表明, 随着土壤C:N的逐渐增大, 平邑甜茶幼苗根系干重逐渐增加, 而株高、茎粗、地上部干重和植株总干重呈先增加后降低的趋势, 以T4处理最大。土壤C:N显著影响了平邑甜茶幼苗的 15N利用率, 从T1到T4处理, 植株的 15N利用率逐渐升高, T4处理(18.46%)是T1处理(10.65%)的1.73倍; 随着土壤C:N的进一步增加, 植株的 15N利用率逐渐降低, T5和T6处理分别比T4处理降低了1.59%和2.58%。土壤C:N较低的T1和T2处理, 平邑甜茶幼苗各器官从肥料中吸收分配到的 15N量对该器官全氮量的贡献率(Ndff)大小顺序为根>叶>茎, 随着土壤C:N的进一步增大, 叶片的Ndff均为最大, 其次是根, 茎最少。随着土壤C:N的增大, 叶片 15N分配率逐渐升高, 13C分配率逐渐降低; 而根系 15N分配率逐渐降低, 13C分配率逐渐升高。综合考虑植株生长和氮素利用状况, 本试验条件下适宜平邑甜茶生长的土壤C:N为21-23。 相似文献
13.
《植物生态学报》2017,41(5):570
Aims The objectives were to investigate the effects of different light intensities on photosynthetic characteristics and chlorophyll fluorescence parameters, to clarify the physiological responses and photo-protective mechanisms of Hydrangea macrophylla to changes in light regimes in view of the distribution of energy absorbed and photosynthetic characteristics.Methods Three light regimes including natural and shade (shading rate 50% and 75% of natural light) were applied to plants for 60 days. After the treatment, the gas-exchange, chlorophyll a fluorescence and photosynthesis-light curves were measured by a portable leaf gas exchange system (LI-6400).Important findings The results showed that the weak light intensity treatment reduced dark respiration rate, light compensation point and light saturation point of plant, but increased apparent quantum yield, suggesting that plants had the physiological strategy to utilize the weakening light by reducing respiration. The net photosynthetic rate, intercellular CO2 concentration, transpiration rate and water use efficiency of plants grown below 50% of natural light showed significant difference compared with natural and shading rate 75% of natural light. There were significant difference between natural and shade treatments in the maximal quantum efficiency of PSII (Fv/Fm), as indicated that it was significantly less at full light than that at 50% of natural light. Initial fluorescence intensity (Fo) of plants was higher at full light than that at 50% of natural light, suggesting that photoinhibition occurred in natural light. The non-photochemical quenching (NQP) decreased with the aggravation of shade stress, indicating that shading decreased the efficiency of photochemical reaction by reducing the fraction of incident light in photochemical energy utilization and decreased thermal dissipation through regulating energy distribution in photosystem II (PSII) in the leaves of Hydrangea macrophylla. In general, the 70% of incident light in photochemical energy utilization was distributed to thermal dissipation, 20% was distributed to non-regulated energy dissipation and 4% was distributed to effective photochemical reaction. In conclusion, responses of plants to increased irradiance are governed by strategy: to utilize a high fraction of incident light in photochemistry and regulate energy dissipation in PSII and weaken the accumulation of excess excitation energy in PSII to protect the photosynthetic apparatus in the leaves of H. macrophylla under saturated radiation. 相似文献
14.
《植物生态学报》2014,38(3):270
近年来逆境导致植物雌雄幼苗的生长出现差异被许多控制实验所证实, 而有关气候变化对雌雄异株植物成树生长的潜在影响尚未引起人们广泛的关注。为进一步揭示气候变化对雌雄植株树木径向和密度生长的不同影响, 该文通过树轮生态学的研究方法, 选择小五台山天然青杨(Populus cathayana)种群为研究对象, 对青杨雌雄植株近30年(1982-2011)的树轮生长特性及其与气候的相关性进行了分析。结果显示: 1)在近30年当地气温不断升高的气候条件下, 雌株的年轮最大密度和晚材平均密度均高于雄株(p < 0.05), 但雌雄植株的径向生长无显著差异; 2)雌雄植株年轮最大密度和宽度差值年表的变化趋势具有一致性, 但在年轮最大密度差值年表的变化上雄株波动幅度大于雌株; 3)青杨雌雄植株年轮密度差值年表对温度响应的月份明显不同。雌株年轮最大密度与当年8月的月平均最高气温显著正相关, 而雄株年轮最大密度与当年1月和4月的气温负相关; 4)生长季前的气候变化对青杨雌雄植株的径向生长均有明显的限制作用。此外, 当年6月的高温对于早材生长的限制作用特别明显。上述结果表明, 雌雄异株植物在树木年轮生长方面对全球气候变暖可能具有不同的响应机制, 雌株比雄株更侧重于密度生长。 相似文献
15.
小型生物反应器内人参不定根的人参皂苷累积 总被引:2,自引:0,他引:2
对小型生物反应器(3~10 L)培养人参不定根的生长和人参皂苷(Rg1、Re、Rb1)的累积规律,以及蔗糖浓度、初始接种量对其生长和人参皂苷累积的影响进行研究。结果表明:小型生物反应器内人参不定根的最佳收获周期为7周。初始接种量和蔗糖浓度影响生物反应器内人参不定根的生长和人参皂苷的累积,20或40 g/L蔗糖对人参不定根的生长和人参皂苷的累积优于60 g/L蔗糖;5和10 L生物反应器内最佳初始接种量分别为15和30g,其不定根的生长量分别为9.29和19.17 g,人参皂苷含量分别为5.16和4.58 mg/g。生物反应器内培养7周的人参与栽培4年的人参相比,人参皂苷Rg1和Re含量相差不大,但栽培人参中Rb1的含量远高于生物反应器中所培养的人参不定根。 相似文献
16.
《植物生态学报》2017,41(6):622
Aims A heterogeneous spatially distribution of nutrients in natural soil may affect plant growth. The objective of this study was to determine the effects of localized nitrogen (N) supply treatments on growth traits and root parameters among different families in Pinus massoniana.Methods Five families of P. massoniana seedlings from full-sib progenies were used as test materials (1, 25, 49, 52, and 57). This study included two conditions, (i.e. homogeneous phosphorus (P) deficiency vs. heterogeneous P efficiency) among soil layers in combination with four N supply treatments in a one-year pot experiment. These N supply treatments were: (1) Homogeneously high N along the soil profile (HHH); (2) high N-high N-low N (HHL); (3) low N-low N-high N (LLH); (4) low N-low N-on side with N addition and the other side without N supply (LLH/L).Important findings This study indicated that localized N supply treatment did enhance the growth of P. massoniana, and this enhancement mainly happened in the pattern of N applied to deep soil. The results showed: 1) Compared to the homogeneous low P condition, there were increase in the growth traits and root parameters of P. massoniana under heterogeneous low P condition. Particularly, the root length and root surface area under the heterogeneous P deficiency condition were 1.95 times and 2.11 times higher than that subjected to the homogeneous P deficiency. 2) Localized N supply treatment affected seedling growth, and there was a significant interaction among N supply pattern and P condition. In compared with homogeneous N supply treatment, the height, basal diameter and dry weight of seedlings increased significantly by localized N supply treatments (LLH and/or LLH/L) under both two P deficiency conditions. But when the seedlings parameters were enhanced under homogeneous P deficiency, they were inhibited under heterogeneous P deficiency subjected to HHL. 3) Within the two P conditions, LLH and LLH/L stimulated root proliferation significantly, and root parameters were significantly enhanced under the heterogeneous P deficiency condition. Specifically, the root length and root surface area subjected to LLH/L rather than HHH were significantly enhanced by 29.2% and 32.3%, respectively. However, the length and surface area of the roots were suppressed by HHL treatment. 4). There were significant differences in response to different N supply treatments among P. massoniana families Seedlings in the families of 49, 52, and 57 responded to the localized N supply treatments with increased root proliferation, which enhanced seedling dry mass. On the other hand, the seedling growth in the family of 25 were stimulated by N and (or) P concentration, while the response of seedlings in the family of 1 to local nitrogen supply was relatively slow and exhibited growth retardation. 相似文献
17.
研究人工林径向生长与气候变化的关系对全球气候变暖背景下人工林合理经营有着重要的意义。该文对在辽东山区广泛栽培的黄花落叶松(Larix olgensis)和日本落叶松(Larix kaempferi)人工林, 运用树木年轮气候学方法建立了辽宁草河口和湾甸子林场落叶松人工林年表, 分析了落叶松径向生长对气候变化的响应以及气候条件、树种、立地条件和林分因子(林龄、密度、蓄积量等)的相对影响程度。结果发现在影响年轮-气候关系的因素中, 气象因子的潜在蒸发散(PET)的影响力最大; 林龄、密度和蓄积量同时也具有重要的影响作用。中龄落叶松人工林径向生长主要与气温呈正相关关系, 成熟落叶松人工林径向生长主要与气温呈负相关关系; 而其他因素, 如树种、立地条件等的影响作用不大。这表明在气候变暖背景下随着林龄增加, 林分会逐渐受到气温升高导致的水分亏缺的限制, 导致明显的生长下降趋势, 因而气候变暖对成熟落叶松人工林威胁更为严重, 所以要注重对成熟林的优先保护, 同时可以预测, 随着东北地区今后气候进一步变暖, 可能将逐步影响到林龄更小的林分的生长, 因此需要进一步研究如何在落叶松人工林经营中采取科学的措施来更好地应对未来气候变化。 相似文献
18.
《植物生态学报》2017,41(11):1177
Aims Recent studies have shown that artificial addition of biochar is an effective way to mitigate atmospheric carbon dioxide concentrations. However, it is still unclear how biochar addition influences soil respiration in Phyllostachys edulis forests of subtropical China. Our objectives were to examine the effects of biochar addition on the dynamics of soil respiration, soil temperature, soil moisture, and the cumulative soil carbon emission, and to determine the relationships of soil respiration with soil temperature and moisture.Methods We conducted a two-year biochar addition experiment in a subtropical P. edulis forest from 2014.05 to 2016.04. The study site is located in the Miaoshanwu Nature Reserve in Fuyang district of Hangzhou, Zhejiang Province, in southern China. The biochar addition treatments included: control (CK, no biochar addition), low rate of biochar addition (LB, 5 t·hm-2), medium rate of biochar addition (MB, 10 t·hm-2), and high rate of biochar addition (HB, 20 t·hm-2). Soil respiration was measured by using a LI-8100 soil CO2 efflux system.Important findings Soil respiration was significantly reduced by biochar addition, and exhibited an apparent seasonal pattern, with the maximum occurring in June or July (except LB in one of the replicated stand) and the minimum in January or February. There were significant differences in soil respiration between the CK and the treatments. Annual mean soil respiration rate in the CK, LB, MB and HB were 3.32, 2.66, 3.04 and 3.24 μmol·m-2·s-1, respectively. Compared with CK, soil respiration rate was 2.33%-54.72% lower in the LB, 1.28%-44.21% lower in the MB, and 0.09%-39.22% lower in the HB. The soil moisture content was increased by 0.97%-75.58% in LB, 0.87%-48.18% in MB, and 0.68%-74.73% in HB, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature and a significant linear relationship with combination of soil temperature and moisture at the depth of 5 cm; no significant relationship was found between soil respiration and soil moisture alone. The temperature sensitivity (Q10) value was reduced in LB and HB. Annual accumulative soil carbon emission in the LB, MB and HB was reduced by 7.98%-35.09%, 1.48%-20.63%, and -4.71%-7.68%, respectively. Biochar addition significantly reduced soil carbon emission and soil temperature sensitivity, highlighting its role in mitigating climate change. 相似文献
19.
动物对植物的采食会刺激植物进行补偿性更新生长, 克隆整合效应能够通过分株之间的物质传输增强克隆植物的这种补偿生长。现今对克隆整合效应在箭竹(Fargesia)补偿更新中的作用仍未得到全面认识。2011年10月到2012年11月, 设立了糙花箭竹(Fargesia scabrida)和缺苞箭竹(F. denudata)各40个样方, 分别进行不剪除样方内分株和剪除样方内分株数量的25%、50%、75%四种模拟采食干扰处理, 并将样方四周的根状茎切断或保持连接。从2012年6月起观测并统计了箭竹分株种群的累积出笋率、总出笋率、补充率, 以及新生分株的株高、基径和单株生物量。结果表明: (1)在不剪除分株的样方, 切断根状茎连接显著增加了糙花箭竹的出笋率和补充率, 但降低了新生分株的株高和单株生物量, 也显著降低了缺苞箭竹的出笋率和补充率; (2)保持根状茎连接时, 25%的剪除强度仅仅降低了糙花箭竹新生分株的单株生物量; 同样在保持根状茎连接的条件下, 25%、50%的剪除强度使缺苞箭竹种群的补充率有所降低, 而切断根状茎后缺苞箭竹在25%的剪除强度下的分株补充率反而升高; (3) 75%的剪除强度并未影响两种箭竹新生分株数量更新, 但造成新生分株质量显著下降; 切断根状茎连接显著降低了糙花箭竹的新生分株的株高和基径, 对缺苞箭竹影响不显著。实验证明克隆整合影响了两种箭竹新生分株的萌发、存活和生长, 但不是两种箭竹进行补偿更新的主要机制, 仅在糙花箭竹分株种群受到重度采食干扰后的更新中才起到明显的促进作用; 两种箭竹均能在50%的剪除强度下通过补偿生长恢复种群的稳定, 75%的剪除强度则会造成箭竹新生分株质量的下降。 相似文献
20.
《植物生态学报》2017,41(11):1190
Aims Viola philippica is a species with a typical chasmogamous-cleistogamous (CH-CL) mixed breeding system. It provides a flower model system to investigate floral organs development under different photoperiods. Morphological changes of intermediate cleistogamous (inCL) flowers have been observed, the trends in variation of changes from CH flowers to CL flowers or from CL flowers to CH flowers have been analyzed, the localized effects of poorly developed stamens and petals in CL and inCL flowers have been identified. This research provided morphology and structural changes with implication for the evolutionary significance of the dimorphic flower formation for further study in dimorphic flower development.Methods We used methods of anatomy and structural analysis to observe the morphological structures of flowers under different photoperiods.Important findings Photoperiod played an important role in the development of CH and CL flowers in V. philippica. Under short-day light and intermediate-day light, both CH and inCL flowers developed simultaneously. Most of the floral buds were CH flowers under a photoperiod of short-day light, but most of the floral buds were inCL flowers under mid-day light. Complete CL flowers formed under long-day lights. However, there were a series of transitional types in the number and morphology of stamens and petals among inCL flowers, including five stamens with three petals related to CH flowers and two stamens with one petal related to CL flowers. The former type was dominant under short-day light conditions, and the latter type was dominant under mid-day light. Further more, there were localized effects in stamen and petal development for CL and inCL flowers. The development of ventral lower petal (corresponding to the lower petal with spur of CH flower) and the adjacent two stamens in inCL flowers were best, and the back petal was similar to that of CL flowers, an organ primordium structure. The adjacent stamens with the back petals tended to be poorly developed. In extreme cases, these stamens in inCL flowers had no pollen sac, only a membranous appendage or even a primordium structure. When the plants with CL or CH flowers were placed under short-day light or long-day light, the newly induced flowers all showed a series of inCL flower types, finally the CL flowers transformed into CH flowers, and the CH flowers transformed into CL flowers. This result indicates the gradual effects of different photoperiods on dimorphic flowers development of V. philippica. A long photoperiod could inhibit the development of partial stamens and petals, and a short photoperiod could prevent the suppression of long-day light and promote the development of stamens and petals. 相似文献