首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
冯慧芳  刘落鱼  薛立 《植物生态学报》2019,43(11):1010-1020
大气氮(N)沉降随着人类的活动而日趋严重, 加上中国热带亚热带红壤普遍缺磷(P), 许多森林生态系统由于广泛使用磷肥而产生P富集, 直接影响了森林土壤化学特性。林分密度改变林地的光照、温度、湿度和凋落物持水量, 从而影响土壤特性。为了解外源性N和P添加与林分密度对大叶相思(Acacia auriculiformis)林地土壤化学性质的影响, 为大叶相思人工林的种植密度和土壤养分管理提供科学依据, 该研究于2013到2015年, 以4种不同密度(1 667、2 500、4 444和10 000 trees·hm -2)的10年生大叶相思人工林为研究对象, 分别进行添加N、P和N+P处理, 在试验结束时采集0-10 cm土壤, 对其pH、有机质含量、N含量、P含量和钾(K)含量进行了测定分析。结果表明: 施N和N+P均显著降低了土壤的pH和速效K含量, 显著提高了林地土壤的碱解N含量。施N还显著提高了林分土壤的全N含量, 施P显著提高了土壤pH, 降低了林分土壤的全N含量。施P和N+P显著提高了土壤有机质、全P和有效P含量。随着林分密度的增加, 各处理的土壤有机质、全N、碱解N、全P、有效P和速效K含量显著提高。N、P添加处理和密度处理对大叶相思林的土壤pH、有机质和N、P、K含量有显著的交互作用。总体来看, N添加、P添加、林分密度及其交互作用对大叶相思的土壤化学性质有显著影响。  相似文献   

2.
种植密度作为影响作物产量和品质的重要因素, 会造成植物对于光照、水分和养分的竞争。为研究种植密度对苜蓿生长与产量的影响, 在日光温室环境下, 以紫花苜蓿(Medicago sativa)为材料, 设置25、100、400、800、1 500、2 000株·m -2, 共6个种植密度, 对紫花苜蓿的种群密度和生长状况进行了观测。结果表明, 各处理播种后15天的平均种植密度分别为25、100、373、745、1 255、1 938株·m -2; 随着紫花苜蓿的生长, 除了低密度(25、100株·m -2)处理没有发生植株数量的变化外, 其余4个密度处理植株数量均有所减少, 即发生不同程度的自疏, 至第二茬收获时(播种后第187天)种群数量分别减少为297、571、759、839株·m -2。植株个体的株高、基径和分枝数量随着现存密度的增加呈指数下降; 个体生物量与现存密度的关系满足竞争密度效应的幂函数关系, 即随着密度的增加而减小。紫花苜蓿单位面积地上生物量符合最终产量恒定法则, 然而, 随着密度的增加, 地下生物量有先增加后减小的趋势。  相似文献   

3.
矮杨梅鲜叶的酚性化学成分   总被引:13,自引:2,他引:13  
从云南产矮杨梅 (MyricananaCheval.)鲜叶中分离了 10个酚类化合物 ,通过波谱数据鉴定为 :杨梅素、杨梅素 3-O -α -L -阿拉吡喃糖甙、杨梅素 3-O - β -D -半乳糖甙、杨梅甙 (即杨梅素 3-O -α -L -鼠李糖甙 )、山奈酚 3-O - β -D -葡萄糖甙、 (- )表没食子儿茶素 3-O -没食子酸酯、 (- )表儿茶素 3-O -没食子酸酯、原飞燕草素B - 2、原飞燕草素B- 2 3′ -O -没食子酸酯和没食子酸。  相似文献   

4.
为揭示植被恢复过程中生态系统的养分循环机制及植物的生存策略, 根据亚热带森林群落演替过程, 采用空间代替时间方法, 以湘中丘陵区地域相邻、环境条件基本一致的檵木(Loropetalum chinensis) +南烛(Vaccinium bracteatu) +杜鹃(Rhododendron mariesii)灌草丛(LVR)、檵木+杉木(Cunninghamia lanceolata) +白栎(Quercus fabri)灌木林(LCQ)、马尾松(Pinus massoniana) +柯(Lithocarpus glaber) +檵木针阔混交林(PLL)、柯+红淡比(Cleyera japonica) +青冈(Cyclobalanopsis Glauca)常绿阔叶林(LCC)作为一个恢复系列, 设置固定样地, 采集植物叶片、未分解层凋落物和0-30 cm土壤样品, 测定有机碳(C)、全氮(N)、全磷(P)含量及其化学计量比, 运用异速生长关系、养分利用效率和再吸收效率分析植物对环境变化的响应和养分利用策略。结果表明: (1)随着植被恢复, 叶片C:N、C:P、N:P显著下降, 而叶片C、N、P含量和土壤C、N含量、C:P、N:P显著增加, 其中LCC植物叶片C、N含量, 土壤C、N含量及其N:P, PLL植物叶片P含量, 土壤C:P显著高于其他3个恢复阶段, 各恢复阶段植物叶片N:P > 20, 植物生长受P限制; 凋落物C、N、P含量及其化学计量比波动较大。(2)凋落物与叶片、土壤的化学计量特征之间的相关关系较弱, 叶片与土壤的化学计量特征之间具有显著相关关系, 其中叶片C、N、P含量与土壤C、N含量、C:N (除叶片C、N含量外)、C:P、N:P呈显著正相关关系; 叶片C:N与土壤C、N含量、C:P、N:P, 叶片C:P与土壤C含量、C:N、C:P, 叶片N:P与土壤C:N呈显著负相关关系。(3)植被恢复过程中, 叶片N、P之间具有显著异速生长关系, 异速生长指数为1.45, 叶片N、P的利用效率下降, 对N、P的再吸收效率增加, LCC叶片N利用效率最低, PLL叶片P利用效率最低而N、P再吸收效率最高。(4)叶片N含量内稳态弱, 而P含量具有较高的内稳态, 在土壤低P限制下植物能保持P平衡。植被恢复显著影响叶片、凋落物、土壤C、N、P含量及其化学计量比, 叶片与土壤之间C、N、P含量及化学计量比呈显著相关关系, 植物通过降低养分利用效率和提高养分再吸收效率适应土壤养分的变化, 叶片-凋落物-土壤系统的N、P循环随着植被恢复逐渐达到“化学计量平衡”。  相似文献   

5.
《植物生态学报》2016,40(11):1145
Aims How alien invasive plants and co-occurring native plants utilize nutrients is one of major issues in invasion ecology. Foliar nitrogen (N) and phosphorus (P) contents and stoichiometry can elucidate the uptake ability and limitation status of nutrients in plants, which provides basic knowledge for understanding the invading ability and co-occurrence or disappearance of plants.
Methods Based on typical alien invasive plants (Chromolaena odorata, Ageratina adenophora) and native plants in southwestern China, this study focused on strategies of N and P utilization among invasive plants and native plants under different invasion conditions. The species compositions, aboveground biomass, leaf N and P contents and leaf N:P were investigated for plants in plots with no invasion and with different invasion extents (estimated by the plot-based percentage of invaders’ biomass in total community) at Mt. Kongming in Xishuangbanna region, Yunnan Province, China.
Important findings The species number decreased significantly with the invasion extent of both C. odorata and A. adenophora, although the aboveground biomass was greatly enhanced. Leaf N and P contents did not differ between the two studied invaders, but they showed significantly higher N and P levels than both co-occurring and only native species (p < 0.05). Besides, leaf N and P contents of invaders increased with the invasion extent, and leaf N of native plants also showed an increasing trend with the invasion extent. When the influence of invasion was checked for the same species, leaf P contents decreased, whereas leaf N and N:P increased for most native plants under invasion. Based on the absolute foliar N and P contents, N:P values, we inferred that native plants were still limited by N, although N availability might be enhanced by invasion. Both invasive plants had leaf N:P values lower than 10, suggesting a higher P uptake relative to N uptake. All above results highlighted a higher N and P uptake of typical alien invasive plants in southwestern China.  相似文献   

6.
AimsLeymus chinensis is a constructive and dominant species in typical steppe of northern China. The structure and functions of L. chinensis grassland ecosystem has been degenerated seriously due to long-term overgrazing in recent decades. As an effective measure to restore the degraded grasslands, the effects of nutrient addition on plant growth and ecosystem structure and functioning have been paid more attention in manipulation experimental research. The effects of nutrient addition, especially P addition on the above- and below-ground functional traits of L. chinensis have rarely been studied; particularly the underpinning mechanisms remain unclear. Our objective is to examine the responses and adaptive mechanisms of L. chinensis to different levels of N and P additions. MethodsWe conducted a culture experiment in the greenhouse, with three levels of N (50, 100 and 250 mg N·kg-1) and P (5, 10 and 25 mg P·kg-1) addition treatments. The above- and below-ground biomass, leaf traits (e.g., specific leaf area, leaf N and P contents) and root traits (e.g., specific root length, root N and P contents) of L. chinensis were determined in this study.Important findings Our results showed that: 1) the aboveground biomass and total biomass of L. chinensis were mostly affected by N addition, while the belowground biomass was mainly affected by P addition. N addition greatly enhanced the aboveground biomass of L. chinensis, while P addition reduced the belowground biomass at the moderate and high N levels. The root-shoot ratio of L. chinensis was influenced by both N and P additions, and root-shoot ratio decreased with increasing N and P levels. N and P additions promoted more biomass and N and P allocations to aboveground and leaf biomass. 2) Leymus chinensis showed different responses and adaptive mechanisms to P addition at low and high N levels. At low N level, L. chinensis exhibited high photosynthetic rate and specific root length (SRL) to improve photosynthetic capacity and root N acquisition, which promoted aboveground biomass. High root P content was favorable for belowground biomass. At high N level, P addition did not significantly affect plant growth of L. chinensis, even reduced its belowground biomass. Leymus chinensis showed high specific leaf area (SLA) and SRL to improve light interception and N acquisition in order to maintain stable aboveground biomass. 3) P addition greatly impacted below-ground than above-ground functional traits. SLA exhibited a weakly positive correlation with SRL, indicating L. chinensis exhibited relatively independence of resource acquirement and utilization between leaf and root functional traits.  相似文献   

7.
《植物生态学报》2016,40(12):1257
AimsThe carbon (C), nitrogen (N) and phosphorus (P) stoichiometry (C:N:P) of soil profoundly influences the growth, community structure, biomass C:N:P stoichiometry, and metabolism in microbes. However, the relationships between soil and microbes in the C:N:P stoichiometry and their temporal dynamics during ecosystem succession are poorly understood. The aim of this study was to determine the temporal patterns of soil and microbial C:N:P stoichiometry and their relationships during ecosystem succession.MethodsAn extensive literature search was conducted and data were compiled for 19 age sequences of successional ecosystems, including 13 forest ecosystems and 6 grassland ecosystems, from 18 studies published up to May 2016. Meta-analyses were performed to examine the sequential changes in 18 variables that were associated with soil and microbial C, N and P contents and the stoichiometry. Important findings (1) There was no consistent temporal pattern in soil C:N along the successional stages, whereas the soil C:P and N:P increased with succession; the slopes of the linear relationships between soil C:N:P stoichiometry and successional age were negatively correlated with the initial content of the soil organic C within given chronosequence. (2) There was no consistent temporal pattern in microbial C:N:P stoichiometry along the successional stages. (3) The fraction of microbial biomass C in soil organic C (qMBC), the fraction of microbial biomass N in soil total N, and the fraction of microbial biomass P in soil total P all increased significantly with succession, in consistency with the theory of succession that ecosystem biomass per unit resource increases with succession. (4) The qMBC decreased with increases in the values of soil C:N, C:P, or N:P, as well as the stoichiometric imbalances in C:N, C:P, and N:P between soil and microbes (i.e., ratios of soil C:N, C:P, and N:P to microbial biomass C:N, C:P, and N:P, respectively). The C:N, C:P, and N:P stoichiometric imbalances explained 37%-57% variations in the qMBC, about 7-17 times more than that explainable by the successional age, illustrating the importance of soil-microbial C:N:P stoichiometry in shaping the successional dynamics in qMBC. In summary, our study highlights the importance of the theories of ecosystem succession and stoichiometry in soil microbial studies, and suggests that appropriately applying macro-ecological theories in microbial studies may improve our understanding on microbial ecological processes.  相似文献   

8.
《植物生态学报》2016,40(6):620
The survival and growth strategies, community structure and functions of microbial decomposers vary with substrate stoichiometry, which profoundly influences substrate decomposition, turnover, and hence the carbon and nutrient cycles of terrestrial ecosystems. It is crucial to understand the relationships among microbial metabolism, community structure and ecosystem processes of terrestrial ecosystems and their responses and feedbacks to global changes. In this review, we first introduced the significance of microbial decomposers in the carbon, nitrogen, and phosphorus cycles of terrestrial ecosystems from perspectives of ecological stoichiometry and metabolic theories. Then we synthesized four potential mechanisms of microbial response and control on substrate stoichiometric variations, i.e., through (1) modifying microbial stoichiometry, (2) shifting microbial community structure, (3) producing extracellular enzymes to acquire limiting resources, and (4) changing microbial carbon, nitrogen, and phosphor use efficiencies. Finally, we proposed three research directions in this field: (1) to comprehensively explore various microbial mechanisms in response to changes in substrate stoichiometry and the relative importance of these mechanisms; (2) to examine influences of global changes on microbial-driven cycles of carbon, nitrogen, and phosphorus; and (3) to explore spatiotemporal changes in the strategies of microbial adaptation to changes in the substrate stoichiometry.  相似文献   

9.
《植物生态学报》2017,41(3):311
Aims Understanding the effects of soil microorganism at different elevations on plant C:N:P stoichiometry can help us to understand the plant-soil interactions in the context of climate change. Our aim was to quantify the independent and interactive effects of soil microbial communities and temperatures on the C, N, and P in the leaves of Dodonaea viscosa—a global widespread species. Methods Rhizosphere soils of D. viscosa were collected from two elevation zones in Yuanmou County, Yunnan Province. A 2 × 3 factorial experiment with six replications was conducted using climate chambers. The leaf C, N and P contents and the soil properties were measured after three months of the treatments. Important findings Compared with the autoclaved treatment, inoculated rhizosphere soils from both high and low elevations had higher nutrient absorption, especially P uptake. Temperature produced no significant effect on leaf C:N:P stoichiometry, but the interactive effect of temperature and microbial treatment appeared significant. For inoculated rhizosphere soils from high elevation, temperature had no significant effect on leaf C:N:P stoichiometry. For inoculated rhizosphere soils from low elevation, leaf N and P contents under low temperature were significantly lower than those with warmer soils. The promoting effect of soil microorganisms on nutrient uptake may be due to the direct effect of beneficial microorganisms (e.g., mycorrhizal fungi), but not through the alteration of nutrient cycling process. Because D. viscosa in the inoculated rhizosphere soils absorbed more N and P from the soil than those in autoclaved soil, the available N and P in inoculated rhizosphere soils were lower than those in autoclaved soils. As predicted future temperature will be lower in the studied region, the growth of D. viscosa may be negatively affected through plant-microbe feedbacks.  相似文献   

10.
《植物生态学报》2017,41(10):1069
Aims The stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in plant organism is vital to understand plant adaptation to environment. In particular, the correlations of elemental stoichiometric characteristics between leaf and fine root could provide insights into the interaction and balance among the plant elements, nutrient use strategies and plant response to global change.Methods We measured C, N, P contents and C:N, C:P, N:P in leaves and fine roots of 60 dominant plants in Horqin sandy land. The 60 plant species were classified into five life forms and two categories such as perennial forb, annual forb, perennial grass, annual grass, shrub, legume, and non-legume. We statistically analyzed the differences and correlations of C, N and P stoichiometry either between fine root and leaf or among five life forms.Important findings The average C, N and P concentrations in leaves of 60 plant species in Horqin sandy land are 424.20 mg·g-1, 25.60 mg·g-1 and 2.10 mg·g-1, respectively. In fine roots, the corresponding element concentrations are 434.03 mg·g-1, 13.54 mg·g-1, 1.13 mg·g-1. N and P concentrations in leaf are approximately twice as high as averages in fine root. Furthermore, similar N:P between leaf and fine root indicates conservative characteristic of elemental stoichiometry in plant organism, suggesting that nutrients distribution is proportional between aboveground and underground of plants. There are significant difference of C, N, P, C:N, C:P and N:P in leaf and root among five life forms. N and P in forb and C:N and C:P in grass are averagely higher than those in other life forms. N:P in annual forb and grass, however, are lower than those in other life forms. C, N in legume are higher than those in non-legume, while C:N in legume is lower than in non-legume. These results imply that nutrient use strategies are significantly different among plant life forms. Correlations analysis showed that N and P in leaf or fine root positively correlated, but C and N, C and P in fine root negatively correlated, suggesting coupling relationship among C, N and P in leaf and fine root. Subsequently, we detected positively significant correlations in C, N, P and their ratios between leaf and fine root, suggesting proportional distribution of photosynthate and nutrient between aboveground and underground during plant growth. Generally, these results supplied fundamental data to understand mass turnover and nutrients cycling of leaves and roots in sand land.  相似文献   

11.
《植物生态学报》2017,41(4):418
Aims Soil total organic carbon and labile organic carbon are important indicators in evaluating soil quality. Mulching is widely applied to promote the emergence of bamboo shoot in winter time through stand management. Yet the consequences of mulching on soil quality in Phyllostachys edulis have not been well studied. We aim at the quantitative effect of mulching duration on soil quality in P. edulis stands.
Methods Several P. edulis stands located in Huangyan District of Taizhou, Zhejiang Province of China, had been applied with mulching for 1-2 years and were used in this study to assess the mulching effects. We also selected stands without mulching treatment as the reference sites (or control, CK) for comparisons.||||Important findings Total soil organic carbon (TOC), light fraction organic matter (LFOM), and easily-oxidized carbon (EOC) contents at stands with 1-year and 2-year mulching treatments were significantly increased compared with those at the CK sites. The 1-year mulching increased TOC, LFOM and EOC by 11.2%-74.2%, 31.7%-196.9% and 5.0%-79.6%, respectively, than those of CK sites, while by 22.2%-90.8%, 36.7%-238.5%, and 21.9%-97.5% with 2-year treatment. However, the contents of water-soluble organic carbon (WSOC) changed insignificantly. Among the indicators, we found that WSOC:TOC in CK was higher than that with the mulching treatments, while EOC:TOC with 1-year treatment was higher than that with 2-year treatment, and EOC:TOC with 2-year treatment was higher than that of CK. Additionally, WSOC, EOC, and LFOM at all three treatments showed high correlations with TOC, with a higher correlation coefficient of WSOC with TOC of 0- 30 cm soil layers in CK than those with mulching treatments. The correlation coefficient of EOC and LFOM with TOC was the highest at the 2-year mulching sites. More importantly, TOC, WSOC, EOC, and LFOM were significantly (p < 0.05), or extremely significantly (p < 0.01), correlated with soil nutrient content, including total N, hydrolysis N, available P, available K, exchangeable Ca, and exchangeable Mg in all treatments. In sum, it appeared that mulching in short term can increase the contents of TOC, soil labile organic carbons and soil nutrients in bamboo soils, yielding an improved soil quality and thus can be promoted as a plausible practice for the sustainable management of P. edulis stands.  相似文献   

12.
《植物生态学报》2017,41(3):325
Aims The increase in atmospheric nitrogen (N) deposition has accelerated N cycling of ecosystems, probably resulting in increases in phosphorus (P) demand of ecosystems. Studies on the effects of artificial N:P treatment on the growth and carbon (C), N, P ecological stoichiometry of desert steppe species could provide not only a new insight into the forecasting of how the interaction between soils and plants responses to long-term atmospheric N deposition increase, but also a scientific guidance for sustainable management of grassland in northern China under global climate change. Methods Based on a pot-cultured experiment conducted for Glycyrrhiza uralensis (an N-fixing species) during 2013 to 2014, we studied the effects of different N:P supply ratios (all pots were treated with the same amount of N but with different amounts of P) on aboveground biomass, root biomass, root/shoot ratio, and C:N:P ecological stoichiometry both in G. uralensis (leaves and roots) and in soils. Additionally, through the correlation analyses between biomass and C:N:P ecological stoichiometry in leaves, roots, and soils, we compared the differences among the C:N:P ecological stoichiometry of the three pools, and discussed the indication of C:N:P ecological stoichiometry in soils for the growth and nutrient uptake of G. uralensis. Important findings The results showed that, reducing N:P decreased C:P and N:P ratios both in G. uralensis (leaves and roots) and in soils but increased aboveground biomass and root biomass of G. uralensis, indicating that low to moderate P addition increased P availability of soils and P uptake of G. uralensis. However, excessive low N:P (high P addition) led to great decreases in soil C:P and N:P ratios, thus hindering N uptake and the growth of G. uralensis. C:N:P ratios in the two pools of G. uralensis (especially in leaves) had close correlations with soil C:N:P ratio, indicating that the change in soil C:N:P ratio would have a direct influence on plants. Our results suggest that, through regulating C:N:P ratio in leaves and soils, appropriate amounts of P addition could balance soil P supply and plant P demand and compensate the opposite influences of long-term atmospheric N deposition increase on the structure of desert steppe.  相似文献   

13.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

14.
Aims Studying storage of carbon (C), nitrogen (N) and phosphorus (P) in ecosystems is of significance in understanding carbon and nutrient cycling. Previous researches in ecosystem C, N and P storage have biased towards forests and grasslands. Shrubland ecosystems encompass a wide gradient in precipitation and soil conditions, providing a unique opportunity to explore the patterns of ecosystem C, N and P storage in relation to climate and soil properties.
Methods We estimated densities and storage of organic C, N and P of shrubland ecosystems in Northern China based on data from 433 shrubland sites.
Important findings The main results are summarized as follows: the average organic C, N and P densities in temperate shrubland ecosystems across Northern China were 69.8 Mg·hm-2, 7.3 Mg·hm-2 and 4.2 Mg·hm-2, respectively. The average plant C, N and P densities were 5.1 Mg·hm-2, 11.5 × 10-2 Mg·hm-2 and 8.6 × 10-3 Mg·hm-2, respectively, and were significantly correlated with precipitation and soil nutrient concentrations. The average litter C, N and P densities were 1.4 Mg·hm-2, 3.8 ×10-2 Mg·hm-2, 2.5 ×10-3 Mg·hm-2 and were significantly correlated with temperature and precipitation. The average soil organic C, N and P densities in the top 1 m were 64.0 Mg·hm-2, 7.1 Mg·hm-2 and 4.2 Mg·hm-2, respectively and the former two were significantly correlated with temperature and precipitation. The total organic C, N and P storage of shrublands in Northern China were 1.7 Pg, 164.9 Tg and 124.8 Tg, respectively. The plant C, N and P storage were 128.4 Tg, 3.1 Tg and 0.2 Tg, respectively. The litter C, N and P storage were 8.4 Tg, 0.45 Tg, 0.027 Tg, respectively. Soil is the largest C, N and P pool in the studied area. The soil organic C, N and P storage in the top 1 meter were 1.6 Pg, 161.3 Tg and 124.6 Tg, respectively.  相似文献   

15.
《植物生态学报》2017,41(12):1228
Aims Leaf is the organ of plant photosynthesis, and it is important to understand the drivers for the variations of leaf nitrogen (N) and phosphorus (P) stoichiometry along geographical and climatic gradients. Here we aimed to explore: 1) the changes in leaf nitrogen (N) and phosphorus (P) stoichiometry of woody plants along an altitudinal gradient in Changbai Mountain, and 2) the relative contribution of climate, plant characteristics, and phylogeny to the changes in leaf N, P concentration and N:P.  相似文献   

16.
《植物生态学报》2018,42(3):277
了解山东省草地生态系统碳库现状和碳通量变化规律对于全国尺度草地生态系统碳源/汇核算有着重要的意义。该研究采用野外面上调查取样和固定加强点静态箱法(LI-840红外分析仪联用)相结合的方法, 分析了山东省暖性草丛生态系统的固碳现状、碳通量季节动态以及净生态系统CO2交换(NEE)对各种环境因子的响应。研究结果表明: 山东暖性草丛生态系统平均碳密度为2.74 Mg C·hm -2, 碳密度的构成排序为土壤碳密度(89%) >生物量碳密度(9%) >凋落物碳密度(2%), 山东暖性草丛碳库总储量约为15.88 Tg C; 结缕草(Zoysia japonica)暖性草丛生态系统NEE的季节动态总体表现为夏季低, 冬季高, 非生长季节(11月至次年4月)向外界净排放CO2, 表现为碳源效应; 生长季节(4-9月)则为净吸收CO2 , 表现为碳汇效应, 峰值月份的平均固碳速率在-2.58- -4.46 μmol CO2·m -2·s -1之间; 2012和2013年泰山小流域暖性草丛NEE年平均值分别为-0.43 μmol CO2·m -2·s -1和-0.31 μmol CO2·m -2·s -1, 都表现为碳汇效应; 光合有效辐射(PAR)、大气温度(Ta)、饱和水汽压差(VPD)和土壤10 cm深度温度(Ts)和含水量(W)是结缕草暖性草丛生态系统NEE动态的主要影响因素, 但不同月份NEE动态的影响因素各异, 且因子间存在着互作效应, 主成分分析表明, NEE的季节动态主要受温度、水分和光强等因子控制。  相似文献   

17.
《植物生态学报》2018,42(2):240
以二年生桢楠(Phoebe zhennan)幼树为研究对象, 采用盆栽控水的方法, 探讨了桢楠幼树在干旱胁迫下渗透调节和活性氧代谢的变化, 以及施氮对桢楠幼树应对干旱胁迫能力的影响。试验先将土壤含水量调整到4个梯度(田间持水量的80% (80% FC)、50% FC、30% FC和15% FC), 1周后测定受胁迫植株的相关生理指标, 之后进行3个水平的施氮处理(对照N0, 中氮MN, 高氮HN, 各施氮量分4次(即干旱梯度形成后第7、14、21和28天)分别施入)。在施氮结束后30天(即开始施肥处理后51天)再次测定各项生理指标。结果表明: 1)干旱处理7天后, 桢楠叶片中游离脯氨酸(Pro)和可溶性糖(SS)含量均随胁迫强度增大而显著增加, 重度干旱(15% FC)下的Pro含量增加尤为明显, 可溶性蛋白(SP)含量则呈先增加后降低的趋势。施氮后, 各种土壤水分状态下的Pro含量进一步增加。水分充足和轻度干旱MN水平下, SS含量也增加, 而在中度和重度干旱下的SS含量显著降低, HN水平各干旱状态下SS含量变化均不显著。施氮结束后30天时, 80% FC和50% FC下的SP含量表现为施氮组低于对照组, 而30% FC和15% FC下则相反。2)施氮前随着干旱胁迫的增强, 桢楠幼树叶片中过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性显著上升, 而过氧化物酶(POD)活性呈先上升后下降的趋势。施氮后, H2O2含量总体上表现为减少趋势, 且MN水平下降幅度最大, HN水平反而不利于降低H2O2的含量。3种酶活性的变化则因干旱程度和施氮水平的不同而呈现出不同的变化趋势。3)施氮前随着干旱胁迫的增强, 叶片丙二醛(MDA)含量呈显著上升趋势, 相对电导率(REC)先显著下降后显著上升; 施氮后, 除重度干旱胁迫外, 其他各干旱处理植株的MDA含量都表现为在MN水平下有所下降, 而在HN水平下有所回升, 但在重度干旱时, 无论是MN或HN处理, MDA含量均呈上升趋势, 表明在重度干旱胁迫下, 难以通过施氮的方式缓解干旱胁迫产生的伤害。4)双因素方差分析显示, 施氮与干旱胁迫间具有极显著的交互效应。以上结果表明: 施一定量的氮肥有利于缓解桢楠幼树受到的干旱胁迫, 以年施氮量计, 施中氮(N元素质量为1.35 g·株 -1)对除重度干旱外的干旱胁迫具有一定的缓解作用, 但施高氮(N元素质量为2.70 g·株 -1)时反而会对植株造成不利影响。  相似文献   

18.
《植物生态学报》2018,42(3):307
灌木在维持干旱半干旱区生态系统稳定性方面发挥着重要的作用。该研究调查了新疆北部草地典型灌木物种, 并分析了这些灌木叶、枝、茎的碳(C)、氮(N)含量特征, 可为新疆草地植被碳氮储量的准确估算以及碳氮循环过程提供基础数据。结果表明: 北疆地区草地的典型灌木有白刺(Nitraria spp.)、刺旋花(Convolvulus tragacanthoides)、红砂(Reaumuria soongarica)、假木贼(Anabasis spp.)、 锦鸡儿(Caragana spp.)、麻黄(Ephedra spp.)、沙拐枣(Calligonum mongolicum)、梭梭(Haloxylon spp.)、金丝桃叶绣线菊(Spiraea hypericifolia)、驼绒藜(Krascheninnikovia spp.)、小蓬(Nanophyton erinaceum)、盐爪爪(Kalidium spp.)、猪毛菜(Salsola spp.)等, 归属于蔷薇科、豆科、麻黄科、柽柳科、蒺藜科、蓼科、旋花科、藜科。北疆草地典型灌木各器官C含量为茎(45.76 ± 3.43)% >枝(44.27 ± 4.51)% >叶(39.15 ± 5.91)%, N含量为叶(2.21 ± 0.59)% >枝(1.55 ± 0.44)% >茎(1.34 ± 0.35)%, C:N为茎(36.74 ± 10.80) >枝(31.07 ± 10.43) >叶(18.94 ± 5.82)。灌木地上部分C含量为(43.77 ± 4.43)%, N含量为(1.56 ± 0.45)%, C:N为(31.78 ± 10.12); C含量变异程度较小, 变异系数为10%, N含量的变异系数为27%, C:N的变异系数为32%。灌木同一器官的C、N含量及C:N在不同科间有显著差异, 蔷薇科各器官的C含量显著大于其他科(p < 0.05); 豆科叶和茎的N含量显著大于其他科(p < 0.05), 麻黄科枝的N含量显著大于其他科(p < 0.05); 旋花科叶和枝的C:N显著大于其他科(p < 0.05), 蔷薇科茎的C:N显著大于其他科(p < 0.05)。  相似文献   

19.
为探明茯苓的碳、氮、磷生态化学计量学特征,采集了云南省11个州、市42个居群的茯苓样本,分析了其菌核与表皮中碳(C)、氮(N)、磷(P)的化学计量特征.结果 表明:茯苓菌核中C、N、P的含量分别为40.24%-43.58%、0.176%-0.532%和0.020%-0.077%;C∶N、C∶P和N∶P的范围分别为93....  相似文献   

20.
《植物生态学报》2016,40(11):1136
Aims In forest ecosystems with phosphorus (P) deficiency, the impact of atmospheric nitrogen (N) deposition on nutritional traits related to N and P uptake potentially affect plant growth and vegetation productivity. The objective of this study was to explore the effects of simulated N deposition on fine root morphological characteristics and effiency of N and P absorption in Pinus massoniana under under low P stress.
Methods Two clones of P. massoniana seedling with different P efficiency (high P efficiency 19-5 vs. low P efficiency 21-3) were used. A two-year pot experiment was applyed with treatments of two P conditions, (i.e. homogeneous low P availability vs. heterogeneous low P availability) and three N deposition levels (0, 30 and 120 kg N·hm-2·a-1; i.e., N0, N30, or N120, respectively) .
Important findings 1) The growth of P. massoniana seedling was interactively affected the three factors: simulated N deposition, P condition and genotypes. Simulated N deposition increased the seedling height and dry mass under heterogeneous P deficiency, but did not significantly affect those traits under homogeneous P deficiency. Under heterogeneous P deficiency and N120 treatment, the seedling height and dry mass of clone 19-5 were 1.1 times and 1.6 times higher than that of clone 21-3, respectively. 2) Fine root length and surface area decreased as root diameter increased. N deposition significantly stimulated proliferation of fine root with diameter ≤1.5 mm, while roots with diameters ranged from 1.5 to 2.0 mm and over 2.0 mm were not influenced. The length of fine root ≤1.5 mm in diameter accounted for 90.4%-92.8% of the total root length and was not affected by N deposition. 3) Under the heterogeneous low P condition, clone 19-5 was found to respond to the simulated N deposition with increased root length and surface area in fine-root diameter class of ≤1.5 mm. Additionally, in compared with control, its N and P absorption efficiency were significantly enhanced 93.3% and 148.4%, respectively under N120 treatment. However, the N and P absorption efficiency of clone 21-3 was less affected by the simulated N deposition. The N and P use efficiency had no notable variation. Finally, we found that the proliferation of fine-root ≤1.5 mm in diameter and high N (P) absorption efficiency maybe the adaptive mechanisms of P. massoniana responding to atmospheric N deposition under P deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号