首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anatomical traits of xylem are the characteristics of tree rings at the cellular and subcellular scales, and are often reflection of environmental signals. Studying the relationships between anatomical traits of xylem and environmental change not only provide physiological explanations to the statistics in dendroclimatology, but can also provide a new vision for studying the adaptation process and response strategies of tree growth to climate change. In this paper, with the relationships between the anatomical characteristics of xylem in tree-rings (cell chronology) and climate change as a main thread, we first outline the basic principles and mechanisms of wood anatomical features to record environmental signals, and expounded the basic methods involved in the process of xylem anatomy. Secondly, we discuss the relationship between the anatomical features of xylem and climate factors. We then propose the following as possible directions of future research based on the existing knowledge gap in the topical area: (1) to explore the temporal and spatial variations in the anatomical characteristics of xylem in tree-rings along radial and tangential directions and the relationships with environmental changes; (2) to explore the threshold of tree growth response to environmental plasticity and adaptation processes; (3) to assess the synergistic and antagonistic effects as well as the formation mechanisms of climate response among different tree-ring proxies, and to determine the specific roles and contributions of major climatic factors during different periods of tree-ring formation.  相似文献   

2.
叶片作为植物与大气环境连接的重要纽带, 对逆境具有强烈的响应。基于叶性状探讨植物对环境的适应机制对盐碱地植物群落构建具有指导意义。该研究以山东省滨海盐碱地3种不同土壤条件下的11个造林树种为对象, 通过对各树种叶解剖性状的测定分析, 阐明叶片功能性状与盐碱地土壤环境的关系, 以期为盐碱地植被修复与群落构建提供科学依据。主要研究结果: (1) 11个树种的叶片厚度较大, 栅栏组织发达, 紧密排列在叶肉近轴面, 呈3-5层。各树种叶片的栅栏组织与海绵组织厚度比值(PT/ST)普遍较高但差异较大, 可指示叶解剖特征在树种间的差异性。(2)不同树种的叶解剖结构在立地环境间具有显著差异, PT/ST可作为指示指标。(3)相关分析和冗余分析表明, 树种叶片解剖结构与立地土壤条件具有密切联系。PT/ST与土壤理化性质相关程度高, 且与土壤pH以及土壤电导率(25 ℃)均呈显著正相关关系, 与土壤硝态氮含量呈显著负相关关系。叶片特征和叶脉特征可解释叶性状随环境变异约84%的信息量。综上所述,叶解剖结构与盐碱地土壤条件存在密切关系, 基于叶解剖特征可进一步分析树种对盐碱环境的适应性, 并为盐碱地植物群落构建的树种选择提供科学依据。  相似文献   

3.
Long-term climate reconstructions are frequently based on tree-ring high-resolution proxies extracted from subfossil peatland trees. Peatlands are peculiar ecosystems characterized by high moisture in the upper soil part which creates a harsh living environment for trees. The climate mostly indirectly influences tree growth determining seasonal variations in the water table level. Within this framework, the aim of this study was to investigate climate responses of trees (Pinus sylvestris L.) growing inside and outside a Southern Alpine peat bog, by using tree-ring and wood anatomical traits (e.g. tracheid number and dimension, cell-wall thickness). Our results showed differences in the xylem structure and climate signal recorded by peatland and mineral soil trees. Peatland trees were characterized by narrow rings and tracheids with thinner cell wall. Summer temperature and precipitation were the major drivers of xylem formation in peatland trees. At intra-annual level wood anatomical traits revealed a complex within-ring signal during the growing season. The multi-parameters approach together with the high-resolution gained by using tree-ring sectors allowed us to obtain new detailed information on the xylem development of peatland trees and climate drivers that influenced it.  相似文献   

4.
Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants. In trees, dated tree-ring series are often exploited to reconstruct dynamics in ecological conditions, and recent work in which wood-anatomical variables have been used in dendrochronology has produced promising results. Environmental signals identified in water-conducting cells carry novel information reflecting changes in regional conditions and are mostly related to short, sub-annual intervals. Although the idea of investigating environmental signals through wood anatomical time series goes back to the 1960s, it is only recently that low-cost computerized image-analysis systems have enabled increased scientific output in this field. We believe that the study of tree-ring anatomy is emerging as a promising approach in tree biology and climate change research, particularly if complemented by physiological and ecological studies. This contribution presents the rationale, the potential, and the methodological challenges of this innovative approach.  相似文献   

5.
研究人工林径向生长与气候变化的关系对全球气候变暖背景下人工林合理经营有着重要的意义。该文对在辽东山区广泛栽培的黄花落叶松(Larix olgensis)和日本落叶松(Larix kaempferi)人工林, 运用树木年轮气候学方法建立了辽宁草河口和湾甸子林场落叶松人工林年表, 分析了落叶松径向生长对气候变化的响应以及气候条件、树种、立地条件和林分因子(林龄、密度、蓄积量等)的相对影响程度。结果发现在影响年轮-气候关系的因素中, 气象因子的潜在蒸发散(PET)的影响力最大; 林龄、密度和蓄积量同时也具有重要的影响作用。中龄落叶松人工林径向生长主要与气温呈正相关关系, 成熟落叶松人工林径向生长主要与气温呈负相关关系; 而其他因素, 如树种、立地条件等的影响作用不大。这表明在气候变暖背景下随着林龄增加, 林分会逐渐受到气温升高导致的水分亏缺的限制, 导致明显的生长下降趋势, 因而气候变暖对成熟落叶松人工林威胁更为严重, 所以要注重对成熟林的优先保护, 同时可以预测, 随着东北地区今后气候进一步变暖, 可能将逐步影响到林龄更小的林分的生长, 因此需要进一步研究如何在落叶松人工林经营中采取科学的措施来更好地应对未来气候变化。  相似文献   

6.
《植物生态学报》2017,41(9):1020
Water is a vital resource for plant survival, growth and distribution, and it is of significance to explore mechanisms of plant water-relations regulation and responses to drought in ecophysiology and global change ecology. Plants adapt to different climates and soil water regimes and develop divergent water-regulation strategies involving a suite of related traits, of which two typical types are isohydric and anisohydric behaviors. It is critical to distinguish water-regulation strategies of plants and reveal the underlying mechanisms for plant breeding and vegetation restoration especially in xeric regions; and it is also important for developing more accurate vegetation dynamic models and predicting vegetation distribution under climate change scenarios. In this review, we first recalled the definitions of isohydric and anisohydric regulations and three quantitative classification methods that were established based on the relationships (1) between stomatal conductance and leaf water potential, (2) between stomatal conductance and vapor pressure deficit, (3) between predawn and midday leaf water potentials. We then compared the two water-regulation strategies in terms of hydraulics and carbon-economics traits. We synthesized the mechanisms of plant water-regulation and found that the interaction between hydraulic and chemical signals was the dominant factor controlling plant water-regulation behavior. Last, we proposed three promising aspects in this field: (1) to explore reliable and universal methods for classifying plant water-regulation strategies based on extensive investigation of the traits related with plant water-relations in various regions; (2) to explore relationships between plant water-regulation strategies and traits of hydraulics, morphology, structure, and function in order to provide reliable parameters for improving vegetation dynamic models; and (3) to deeply understand the processes of plant water-regulation at different spatial and temporal scales, and reveal mechanisms of plants’ responses and adaption to environmental stresses (especially drought).  相似文献   

7.
大气CO2浓度升高对植物的影响是目前植物生态学研究中普遍关注的问题。以往的研究主要关注植物地上部分叶解剖结构及生理功能的改变, 而对根解剖结构和生理功能变化以及根与叶变化之间潜在联系的研究较少。该文以三年生红松(Pinus koraiensis)幼苗为研究对象, 通过CO2浓度倍增(从350 µmol·mol-1增加到700 µmol·mol-1)试验, 研究当年生针叶和根尖解剖结构及生理功能的变化。结果表明: (1) CO2浓度倍增处理的红松幼苗, 气孔密度显著降低, 叶肉组织面积、木质部及韧皮部面积明显增加; (2) CO2浓度倍增导致红松幼苗根尖直径增粗, 皮层厚度和层数显著增加, 管胞直径变小; (3)高CO2浓度处理下, 叶气孔导度和蒸腾速率降低, 光合速率和水分利用效率提高, 同时根尖的导水率显著下降, 但管胞的抗栓塞能力显著提高。这些结果显示, 叶和根解剖结构及生理功能在CO2浓度升高条件下具有一致的响应。未来研究中应该同时关注全球气候变化对植物地上和地下器官结构与功能的影响。  相似文献   

8.
In the tropical Andes climate change is expected to increase temperatures and change precipitation patterns. To overcome the lack of systematic weather records that limits the performance of climate models in this region, the use of the environmental information contained in tree rings from tropical Andean species have been found useful to reconstruct spatio-temporal climate variability. Because classical dendrochronology based on ring-width patterns is often challenging in the tropics, alternative approaches such as Quantitative Wood Anatomy (QWA) based on the measurement and quantification of anatomical traits within tree rings can be a significant advance in the field. Here we assess the dendrochronological potential of Polylepis microphylla and its climate sensitivity by using i) classic dendrochronological methods to generate the first Tree-ring Width (TRW) chronology for this tree species spanning from 1965 to 2018; ii) radiocarbon (¹⁴C) analyses as an independent validation method to assess the annual periodicity of the tree growth layers; and iii) QWA to generate tree-ring annual records of the number (VN) and size (VS) of vessels to investigate the climate sensitivity of these anatomical traits. The annual periodicity in P. microphylla radial growth was confirmed by both dendrochronological and ¹⁴C analyses. We found that VN and VS are promising new proxies to reconstruct climate variability in this region and that they provide different information than TRW. While TRW provides information at inter-annual resolution (i.e., year-to-year variability), VN and VS generated with sectorial QWA provide intra-annual resolution for each stage of the growing process. The TRW and the anatomical traits (i.e., VN and VS) showed strong positive correlation with maximum temperature for different periods of the growing season: while VS is higher with warmer conditions prior to the growing season onset, tree-rings are wider and present higher number of vessels when warmer conditions occur during the current growing season. Our findings pointed out the suitability of P. microphylla for dendrochronological studies and may suggest a good performance of this species under the significant warming expected according to future projections for the tropical Andes.  相似文献   

9.
AimsTo further understand the sensitivity of tree growth to climate change and its variation with altitude, particularly the growth-climate relationship near the timberline, the radial growth of Larix olgensis in an oldgrowth forest along an altitudinal gradient on the eastern slope of Changbai Mountain was investigated. MethodsThe relationships between climate factors and tree-ring index were determined using bootstrapped response functions analysis with the software DENDROCLIM2002. Redundancy analysis, a multivariate “direct” gradient analysis, and its ordination axes were constrained to represent linear combinations with meteorological elements. The analysis was used to clarify the relationship between tree-ring width indexes at different elevations and climate factors during the period 1959-2009.Important findings indicated: (1) Tree ring chronologies from high altitudes were more superior than other samples in terms of growth-climate relationship, revealing that trees at high altitudes are more sensitive to climate variation than at low sites, (2) Tree growth was mainly affected by temperatures of from before and through growing season in previous year, especially in June and August. In comparison, tree growth in the low elevation was regulated by the combination of precipitation of August and Palmer drought severity index (PDSI) of September in current year, (3) Trees growing below timberline appeared to be more sensitive to climate warming; small extents of habitat heterogeneity or disturbance events beyond timberline may have masked the response, hence the optimal sites for examining growth trends as a function of climate variation are considered to be just below timberline, and (4) Redundancy analysis between the three chronologies and climate factors showed the same results as that of the correlation analysis and response function analysis, and this is in support of previous conclusion that redundancy analysis is also effective in quantifying the relationship between tree-ring indexes and climate factors.  相似文献   

10.
Tropical West African savannas are exposed to high climatic variability with potential impacts on tree growth, forest dynamics and ecosystem productivity. In such context, understanding the long-term ecological responses of savanna trees to changing environmental conditions is of great relevance for taking appropriate conservation actions. We conducted the first study on tree-ring analysis and quantitative wood anatomy on Afzelia africana Sm. in Burkina Faso, to investigate the life-span growth trajectories and wood anatomical adjustment to site and to climate variations. A total of 24 stem discs was collected in four protected forests along the Sudano-sahelian and the Sudanian climatic zones. Wood samples were analyzed using standard dendrochronological methods and quantitative wood anatomy. The mean annual growth rates varied from 1.002 (± 0.249) mm. year−1 in the Sudanian zone to 1.128 (± 0.436) mm. year−1 in the Sudano-sahelian zone. Analysis of growth trajectories showed high variations within sites and between climatic zones. Wood anatomical traits significantly varied between sites. Principal Component Analysis revealed strong relationships between ring width, wood density and vessel traits, with 82.81 % of the total variance explained. Vessel size significantly increased from the pith to the bark, highlighting the ontogenetic effects on xylem anatomical variations. Inverse relationships were found between vessel size and vessel density across the driest site and the wettest site, suggesting that the higher the rainfall, the taller the tree, the larger vessel size, but the lower vessel density. By contrast, more arid conditions and high evapotranspiration lead to smaller vessel sizes and higher vessel density. Such anatomical adjustments highlight the trade-offs between water conductance efficiency and hydraulic safety, and emphasize physiological responses to climate variability. These variations on the long-term dynamics and xylem anatomical patterns underline complex interactions between ontogenetic effects and contrasting environmental factors that affect the eco-physiological functioning of A. africana throughout the Sudanian region.  相似文献   

11.
《植物生态学报》2016,40(9):958
Large scale herbivorous insect outbreaks can cause death of regional forests, and the events are expected to be exacerbated with climate change. Mortality of forest and woodland plants would cause a series of serious consequences, such as decrease in vegetation production, shifts in ecosystem structure and function, and transformation of forest function from a net carbon sink into a net carbon source. There is thus a need to better understand the impact of insects on trees. Defoliation by insect pests mainly reduces photosynthesis (source decrease) and increases carbon consumption (sink increase), and hence causes reduction of nonstructural carbohydrate (NSC). When the reduction in NSC reaches to a certain level, trees would die of carbon starvation. External environment and internal compensatory mechanisms can also positively or negatively influence the process of tree death. At present, the research of carbon starvation is a hotspot because the increase of tree mortality globally with climate change, and carbon starvation is considered as one of the dominating physiological mechanisms for explaining tree death. In this study, we reviewed the definition of carbon starvation, and the relationships between the reduction of NSC induced by defoliation and the growth and death of trees, and the relationships among insect outbreaks, leaf loss and climate change. We also presented the potential directions of future studies on insect-caused defoliation and tree mortality.  相似文献   

12.
叶片性状-环境关系对于预测气候变化对植物的影响至关重要。该研究以青藏高原东缘常见阔叶木本植物为研究对象, 从47个样点采集了332个物种共666个种群的叶片, 测量了15个叶片性状, 调查了该区域木本植物叶片性状的变异程度, 并从种内和种间水平探讨了叶片性状对环境的响应及适应策略。结果表明, 反眏叶片大小的性状均具有较高的变异, 其中, 叶片面积是变异程度最大的性状。除气孔密度外, 大多数叶片性状与海拔显著相关。气候是叶片性状变异的重要驱动因素, 3.3%-29.5%的叶片性状变异由气候因子组合解释。其中, 气温对叶片性状变异解释度最高, 日照时间能解释大部分叶片性状的变异, 而降水量对叶片性状变异的解释度相对较小。与环境(海拔和气候因子)显著相关的叶片性状在种内明显少于种间水平, 可能是植物性状之间的协同变化与权衡使种内性状变异比较小, 从而减弱了种内叶片性状与环境因子的相关性。研究结果总体表明,叶片性状与木本植物对环境的适应策略密切相关, 植物通过选择小而厚的叶片和较短的叶柄以适应高海拔的 环境。  相似文献   

13.
《植物生态学报》2016,40(8):834
To maintain long-distance water transport in woody plants is critical for their survival, growth and development. Water under tension is in a metastable state and prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity, and eventually plant death. In face to water stress-induced cavitation, plants either reduce frequency of embolism occurrence through cavitation resistance with specialized anatomical struc- ture, or/and form a metabolically active embolism repair mechanism. For the xylem embolism and repair, however, there are controversies regarding the occurring frequency, conditions and underlying mechanisms. In this review paper, we first examined the process, temporal dynamics and frequency of xylem embolism and repair. Then, we summarized hypotheses for the mechanisms of the novel refilling in xylem embolism repair, including the osmotic hypothesis, the reverse osmotic hypothesis, the phloem-driven refilling hypothesis, and the phloem unloading hypothesis. We further compared differences in xylem embolism and repair between conifers and angiosperms tree species, and examined the trade-offs between cavitation resistance and xylem recovery performance. Finally, we proposed four priorities in future research in this field: (1) to improve measuring technology of xylem embolism; (2) to test hypotheses for the mechanisms of the novel refilling in xylem embolism repair and the signal triggering xylem refilling; (3) to explore species-specific trait differences related to xylem embolism and repair and their underlying trade-off relationships; and (4) to enhance studies on the relationship between the involvement of carbon metabolism and aquaporins expression in xylem embolism and repair.  相似文献   

14.
基于青海柴达木盆地东缘山地青海云杉生长上限的树轮样本,在获取树轮宽度数据的同时,获取了细胞特征指标,包括细胞个数和细胞大小,建立了树轮早材、晚材、整轮的细胞个数标准年表和细胞大小的最大值、最小值年表,并通过与附近茶卡气象站过去31年(1970—2000年)逐月降水量和温度的相关分析和响应函数分析,从细胞尺度探讨了青海云杉生长与外界气候要素的关系.结果表明:早材细胞个数与冬半年(上年10月至当年3月)温度之间呈正相关关系;晚材细胞个数除了与11月和12月最低温度呈显著正相关外,还与生长季中7月和8月平均温度呈显著相关关系;早、晚材细胞个数同时与7月的降水量呈显著负相关.早材细胞个数与5月的降水量呈正相关关系.对于早材最大细胞大小的年表来说,其变化与2月的降水量变化有很好的一致性,而晚材最小细胞的大小与8月降水量的变化同步.细胞个数和细胞大小不仅记录了树轮宽度所记录的温度变化信息,还额外记录了一定的降水信息,说明不同的树木生长指标能够记录不同的气候信息.利用同一地点同一树种不同类型的树轮指标,能够提取多种气候要素的变化信息,这对将来从同一样点的树轮资料中提取更丰富的气候信息以及发掘树轮气候学的潜力具有一定意义.  相似文献   

15.
木本植物木质部解剖特征与水分运输和干旱适应策略密切相关,但目前对华北低山丘陵区常用树种这方面的研究仍然不足。为研究这一地区植物木质部解剖特征与抗旱性的关系,研究以抗旱树种和非抗旱树种各5种为研究对象,通过测定与木质部横截面导管、薄壁组织相关的大量解剖学性状和非结构性碳浓度,比较两类树种木质部解剖特征的差异和解剖性状间的关联,以探究这些树种水力学的干旱适应策略差异。结果显示:1)10个树种的16个木质部性状均有较大变异性;2)两类树种间的平均导管直径和导管密度无显著差异,但抗旱树种导管壁厚度、最大导管直径、旁管薄壁组织比例和轴向薄壁组织比例以及非结构性碳(NSC)浓度显著大于非抗旱树种;3)抗旱树种的导管壁厚度与平均导管直径、最大导管直径和潜在最大导水率均呈显著正相关关系,最大导管直径与潜在最大导水率呈显著正相关关系,但非抗旱树种不存在这些关系。本研究抗旱树种同时具有较大的最大导管直径和较厚的导管壁,在保证较高的水分运输效率的同时又具备一定的抗栓塞能力,较多的旁管薄壁组织和NSC也为抗旱树种提供了更大的木质部水储存和栓塞修复能力。  相似文献   

16.
Under climate change, modifications on plants’ growth are expected to be the strongest at species margins. Therein, tree acclimation could play a key role as migration is predicted to be too slow to track shifts of bioclimatic envelops. A requirement is, however, that intra-population genetic diversity be high enough for allowing such adaptation of tree populations to climate change. In this study, we tested for the existence of relationships between genetic diversity, site environmental conditions, and the response of annual tree growth to climate of Pinus cembra at its southern limit in the Alps. Site-specific climatic and environmental factors predominantly determined the response of trees along the precipitation gradient. The growth-climate interactions were chiefly linked to mean annual precipitation and temperature, slope and tree-size, and less to genetic diversity. We show that genetic background of Pinus cembra has exclusively indirect modulating power with limited effects on tree-ring formation, and within the southern limit in the Alps, genetic variability is not necessarily well expressed in the patterns of annual tree growth. Our results may imply little adaptive capacity of these populations to future changes in the water balance.  相似文献   

17.
在全球气候变暖的背景下, 北半球中高纬度地区出现了树轮径向生长对气候变化的分异响应现象, 但是阿尔泰山优势针叶树种对气候因子响应的稳定性还存在不确定性。该研究选择阿尔泰山中段高海拔西伯利亚落叶松(Larix sibirica)样本建立了树轮宽度年表, 并对年表特征及树木径向生长-气候的动态关系进行了分析。结果表明: 生长季初期和中期的气温是研究区树木生长的主控气候因子; 树木径向生长与当年4月的气温显著负相关, 与当年6-7月的气温显著正相关; 研究区西伯利亚落叶松径向生长与当年4月和6-7月的气温发生了分异现象, 表现为随着气候变化, 树木径向生长对生长季初期由高温引起的干旱的响应敏感性越来越强, 而对生长季中期气温的敏感性表现出先减弱再增强的趋势。阿尔泰山西伯利亚落叶松径向生长对气候变化的响应比较敏感, 适合开展树木生长-气候变化的研究; 检验树木径向生长对气候变化分异响应为该区域基于树木年轮开展历史气候重建和提高未来森林生态系统发展趋势预测的准确性提供了科学依据。  相似文献   

18.
Trees can adjust xylem anatomical structure related with potential hydraulic functions to cope with climate variability. We therefore need a better understanding of how climate variability constrains wood anatomy and tree radial growth. Pinus tabuliformis dominates natural forests and plantations over the western Qinling Mountains, which is one of the ecologically vulnerable areas in China. Here, we investigated the response of P. tabuliformis tree-ring anatomical structure to climate variability by applying wood anatomy analysis, and evaluated the influences of anatomical traits on potential hydraulic functions and the climate significance of intra-annual density fluctuations (IADFs). We found that with the increasing temperature from spring to summer, the negative effect of temperature on the formation and enlargement of earlywood and transition-wood tracheids was gradually enhanced. However, spring precipitation not only had a direct and positive influence on the formation of earlywood, but also had a delaying impact on the transition-wood cell enlargement. Besides, the smaller earlywood tracheid size of P. tabuliformis could be a substantially characteristic reflecting spring drought. The contribution of lumen diameter on conduit wall reinforcement was dominated in earlywood, while the contribution of cell wall thickness was greater than that of lumen diameter in latewood. The different contributions of anatomical traits on conduit wall reinforcement would further affect the response of potential hydraulic function to climate. IADFs of P. tabuliformis could be a potential indicator to reflect the abnormal summer precipitation events in the western Qinling Mountains. IADFs with strong and weak intensity indicated years with high and low rates of change in mid-summer precipitation, respectively. Future warmer and drier climate in the western Qinling Mountains will likely result in the production of smaller tracheids to ensure hydraulic safety, which means the stronger drought resistant of P. tabuliformis in the future. In this study, we linked the xylem anatomy and potential hydraulics functions with intra-seasonal climate variability in the context of climate warming and drying, and proposed some xylem anatomical indices reflecting potential drought events.  相似文献   

19.
《植物生态学报》2016,40(5):523
Epiphyllous liverworts form a special group of bryophytes that primarily grow on leaves of understory vascular plants, occurring in constantly moist and warm evergreen forest in tropical and subtropical regions. Epiphyllous liverworts may influence ecosystem processes including carbon, nitrogen and water cycles. Furthermore, they are very sensitive to climate change and forest fragmentation, and can be used as bioindicators for changes in ecological conditions and escalating loss of biodiversity. In this paper, we reviewed studies on morphological traits, species diversity, geographical distribution and environmental conditions (including characteristics of hosts and habitats) of epiphyllous liverworts, discussed the possible reasons for the mechanisms underlying the diversity pattern of epiphyllous liverworts. According to these studies, we proposed that further ecological studies on epiphyllous liverworts should be more focused on their formation, mechanisms of matter exchange and energy flux, ecological functions in forest ecosystem, the response to climate changes and their broader-scale ecology.  相似文献   

20.
The forest-steppe ecotone in southern Siberia is characterized by a strong dependence of tree growth on summer drought, which is expected to increase under ongoing climate change, with potential consequences for regional and global water and carbon cycles. Since climate conditions control tree secondary growth throughout the growing season, it is assumed that climate change will differently impact the formation of particular tree-ring sectors.In this study, we evaluated spatiotemporal trends in Pinus sylvestris L. tree-ring traits: tree-ring (RW), earlywood (EW) and latewood (LW) widths, as well as their climate response in order to understand potential reactions of P. sylvestris radial growth to climate change along a 4900 km longitudinal transect of increasing continentality in southern Siberia.Results indicated an increasing tree radial growth from the West to the East along the transect. Tree-ring parameters were sensitive to drought, showing a temporal delay in the climatic signals of LW (summer) relative to EW (spring). Climate control of tree growth was stronger at the western site, while it was alleviated over time in eastern sites.This study highlighted the wide plasticity of P. sylvestris to thrive within a wide range of climatic conditions, also suggesting that future drought, as predicted by climate change simulations, will potentially impact P. sylvestris growth differently along the studied gradient, being more susceptible at the western sites due to the current growth limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号