首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤微生物生物量在森林生态系统中充当具有生物活性的养分积累和储存库。土壤微生物转化有机质为植物提供可利用养分, 与植物的相互作用维系着陆地生态系统的生态功能。同时, 土壤微生物也与植物争夺营养元素, 在季节交替过程和植物的生长周期中呈现出复杂的互利-竞争关系。综合全球数据对温带、亚热带和热带森林土壤微生物生物量碳(C)、氮(N)、磷(P)含量及其化学计量比值的季节动态进行分析, 发现温带和亚热带森林的土壤微生物生物量C、N、P含量均呈现夏季低、冬季高的格局。热带森林四季的土壤微生物生物量C、N、P含量都低于温带和亚热带森林, 且热带森林土壤微生物生物量C含量、N含量在秋季相对最低, 土壤微生物生物量P含量四季都相对恒定。温带森林的土壤微生物生物量C:N在春季显著高于其他两个森林类型; 热带森林的土壤微生物生物量C:N在秋季显著高于其他2个森林类型。温带森林土壤微生物生物量N:P和C:P在四季都保持相对恒定, 而热带森林土壤微生物生物量N:P和C:P在夏季高于其他3个季节。阔叶树的土壤微生物生物量C含量、N含量、N:P、C:P在四季都显著高于针叶树; 而针叶树的土壤微生物生物量P含量在四季都显著高于阔叶树。在春季和冬季时, 土壤微生物生物量C:N在阔叶树和针叶树之间都没有显著差异; 但是在夏季和秋季, 针叶树的土壤微生物生物量C:N显著高于阔叶树。对于土壤微生物生物量的变化来说, 森林类型是主要的显著影响因子, 季节不是显著影响因子, 暗示土壤微生物生物量的季节波动是随着植物其内在固有的周期变化而变化。植物和土壤微生物密切作用表现出来的对养分的不同步吸收是保留养分和维持生态功能的一种权衡机制。  相似文献   

2.
研究了浙江哩铺铜矿废弃地土壤微生物生态特征和群落结构.结果表明,与对照土壤相比矿区土壤微生物生态特征发生了明显的改变,微生物呼吸速率减弱,微生物生物量显著降低,微生物生理生态参数Cmic/Corg下降、qCO2值明显升高,重金属对土壤微生物生态特征有明显的影响.Biolog结果显示,矿区土壤微生物的群落结构发生变异,对能源碳的消耗量和速度明显升高,改变了微生物利用碳源的种类,使微生物消耗更多的能源,以维持其正常的生命活动,利用效率降低,明显不如对照土壤.由此可见,微生物生态特征是表征矿区复垦土壤重金属污染的灵敏、有效和可靠的生物学指标.  相似文献   

3.
繁殖是植物生命活动的重要环节, 了解植物的繁殖特征是解释植物生态适应性和制定有效管理措施的重要依据。该研究以荒漠草原猪毛蒿(Artemisia scoparia)种群为研究对象, 通过测定不同土壤类型的理化性质和猪毛蒿的繁殖特征, 以期探讨影响其繁殖特征的主要土壤驱动因子。结果表明: 灰钙土、风沙土和基岩风化残积土的水溶性碳含量、全氮含量、全磷含量、全盐含量、土壤水分含量、土壤硬度存在显著差异。猪毛蒿平均个体大小、单株头状花序的平均质量和数量均以灰钙土生境下最大, 基岩风化残积土最小。繁殖分配在不同土壤类型下无显著差异, 但与单个头状花序质量、单株头状花序数量和质量间呈极显著正相关关系。单株头状花序数量与单个头状花序质量间呈负相关关系。在风沙土生境下, 单株头状花序质量主要受到土壤水溶性碳含量土壤水分含量以及pH值的共同影响; 单株头状花序数量受全盐含量的影响最大; 繁殖分配和单个头状花序质量主要受全碳含量的影响。灰钙土生境下, 单株头状花序质量与土壤水溶性碳含量土壤水分含量和有机碳含量呈正相关关系; 速效氮含量显著影响着单株头状花序数量。而基岩风化残积土生境下, 繁殖特征的变异主要受到土壤水溶性碳含量土壤硬度土壤水分含量全磷和速效磷含量的影响。综合分析发现, 土壤因子对猪毛蒿繁殖特征的影响程度不同, 其中单株头状花序数量和质量极显著地受到土壤水溶性碳含量和土壤水分含量的影响, 繁殖分配和单个头状花序质量与土壤水溶性碳含量、土壤水分含量呈负相关关系。因此, 土壤水溶性碳含量和土壤水分是荒漠草原地区影响猪毛蒿种群繁殖特征的主要土壤因子。  相似文献   

4.
《植物生态学报》2019,43(11):999
海拔变化导致温度、水分、植被等条件的改变会显著影响土壤碳(Csoil)、氮(Nsoil)、磷(Psoil)含量及其化学计量特征, 土壤微生物如何通过调整自身生物量和胞外酶化学计量特征进行适应仍不明确。为了研究海拔梯度变化对土壤微生物生物量和胞外酶活性的影响, 探索土壤-微生物-胞外酶C:N:P化学计量特征间的协变性, 该文以黑龙江省雪乡大秃顶子山800、1 100、1 600和1 700 m分布的典型生态系统(针阔混交林、针叶林、岳桦林和草地)为研究对象, 测定其Csoil、Nsoil、Psoil含量, 微生物生物量C (Cmic)、N (Nmic)、P (Pmic)含量, 以及微生物获取C (β-1, 4-葡萄糖苷酶, BG), N (几丁质酶, NAG), P (酸性磷酸酶, AP)资源的相关胞外酶活性。结果表明: (1)海拔梯度变化对Csoil和Cmic含量没有显著影响; 不同海拔间土壤和微生物生物量N、P含量存在显著差异。(2) BG和NAG活性随着海拔的升高呈现显著降低趋势, 表明海拔升高导致的温度降低抑制了微生物的活性。(3)海拔对土壤C:N、微生物C:N:P以及胞外酶C:N:P均具有显著影响。胞外酶C:N:P随着微生物与土壤间C:N:P化学计量不平衡性(土壤C:N:P与微生物C:N:P的比值)的增加而逐渐降低。微生物可以通过调整自身生物量以及胞外酶C:N:P适应土壤化学计量特征的变异, 该结果支持了微生物的资源分配理论。  相似文献   

5.
武夷山植被带土壤微生物量沿海拔梯度的变化   总被引:11,自引:1,他引:11  
土壤微生物量是陆地生态系统碳循环的重要组成部分,在森林生态系统物质循环和能量转化中占有特别重要的地位.以武夷山常绿阔叶林(EBF)、针叶林(CF)、亚高山矮林(DF)和高山草甸(AM)为试验对象,研究了土壤微生物量沿海拔梯度的变化特征.结果表明:在0~10cm土壤层,随着海拔高度的增加,年平均土壤微生物量增大,AM的年平均土壤微生物量为4.07 g·kg-1,分别为DF、CF和EBF的2.06、3.21倍和3.91倍;AM的年平均土壤微生物量显著大于DF、CF和AM(p<0.01),DF的年平均土壤微生物量显著大于EBF、CF(p<0.05),EBF和CF的年平均土壤微生物量无显著性差异(p>0.05),10~25cm土壤层的年平均土壤微生物量的变化规律与上层基本一致;在0~10cm土壤层,不同海拔年平均土壤微生物量分别与土壤有机碳、全氮、全硫含量以及土壤湿度呈显著正相关(p<0.05),在10~25cm土壤层,不同海拔年平均土壤微生物量分别与土壤有机碳、全氮含量呈显著正相关(p<0.05).研究表明,武夷山亚热带森林年平均土壤微生物量随海拔高度升高而增加,土壤有机碳、全氮、全硫和土壤湿度可能是调控土壤微生物量沿海拔梯度变化的主要因子.  相似文献   

6.
The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate addition have been estimated for chernozem soils under different land use: arable lands used for 10, 46, and 76 years, mowed meadow, natural forest, and forest shelter belt. Microbial biomass and the content of microbial carbon in humus (Cmic /Corg) decreased in the following order: soils under forest cenoses—mowed meadow—10-year arable land—46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of natural forest. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the amounts and activity of microbial biomass are discussed.  相似文献   

7.
Abstract Estimation of soil microbial biomass in burned and unburned Japanese red pine forests was attempted using the chloroform fumigation-incubation method. As the amount of CO2-C evolved from the fumigated soil for 10–20 days after fumigation (designated as F') was always lower than that from the unfumigated soil during the same period (UF'), the formula, microbial biomass-C(M) = the amount of CO2-C evolved from the fumigated soil for 0–10 days after fumigation, F) − F'/ k c, was proposed instead of Jenkinson's conventional formula, M = (F − UF')/ k c. The k c value was also determined as 0.30 using 3 fungal and 3 bacterial cultured species as internal standards. Microbial biomass-C calculated by (F − F')/0.30 decreased with soil depth at both the burned (Nenoura, 3.5 years after fire) and unburned (Ato) sites, showing the significant correlation with the decrease of soil respiration and organic C content along soil depth. Microbial biomass-C in the 0–2 cm soil layer at the burned site at Nenoura was 130 mg/100 g dry soil and those in the HF horizon and 0–2 cm soil layer at the unburned site at Ato were 686 and 146 mg/100 g dry soil, respectively.  相似文献   

8.
《植物生态学报》2018,42(10):1022
为探讨荒漠草地沙漠化对“土壤-微生物-胞外酶”系统生态化学计量的影响机理, 该研究采用空间序列代替时间演替的方法, 研究了宁夏盐池荒漠草地沙漠化过程中土壤、土壤微生物及土壤胞外酶碳(C)、氮(N)、磷(P)生态化学计量的变异特征。结果表明: (1)随着荒漠草地沙漠化的不断加剧, 土壤C、N、P含量和土壤C:P、N:P均呈降低趋势, 而土壤C:N逐渐增加。(2)荒漠草地沙漠化过程中, 土壤微生物生物量C (MBC):微生物生物量P (MBP)、微生物生物量N (MBN):MBP和土壤β-葡萄糖苷酶(BG):N-乙酰氨基葡萄糖苷酶(NAG)逐渐降低, 而土壤BG:磷酸酶(AP)和NAG:AP基本表现为增加趋势。(3)随着荒漠草地沙漠化程度的加剧, 土壤微生物C利用效率CUEC:NCUEC:P与土壤微生物N利用效率NUEN:C和土壤微生物P利用效率PUEP:C的变化趋势相反。(4)荒漠草地土壤、土壤微生物生物量和土壤胞外酶C:N化学计量(C:N, MBC:MBN, BG:NAG)与土壤、土壤微生物生物量和土壤胞外酶N:P化学计量(N:P, MBN:MBP, NAG:AP)显著负相关, 而土壤和胞外酶C:N化学计量(C:N, BG:NAG)与土壤和胞外酶C:P化学计量(C:P, BG:AP)显著正相关。土壤N:P与土壤MBN:MBP显著正相关, 而与土壤NAG:AP显著负相关。分析表明, 荒漠草地沙漠化过程中土壤微生物生物量及胞外酶活性随着土壤养分的变化而发生变化; 微生物-胞外酶C:N:P生态化学计量与土壤养分存在协变关系, 为理解荒漠草地土壤-微生物系统C、N、P循环机制提供理论依据。  相似文献   

9.
《植物生态学报》2015,39(12):1166
Aims As the primary pathway for CO2 emission from terrestrial ecosystems to the atmosphere, soil respiration is estimated to be 80 Pg C·a-1 to 100 Pg C·a-1, equivalent to 10 fold of fossil fuel emissions. As an important management practice in plantation forests, fertilization does not only increase primary production but also affects soil respiration. To investigate how nitrogen (N) fertilization affects total soil, root and microbial respiration, a N fertilization experiment was conducted in a five-year-old Cunninghamia lanceolata plantation in Huitong, Hunan Province, located in the subtropical region. MethodsOne year after fertilization, soil respiration was monitored monthly by LI-8100 from July 2013 to June 2014. Soil temperature and water content (0-5 cm soil depth) were also measured simultaneously. Available soil nutrients, fine root biomass and microbial communities were analyzed in June 2013. Important findings Total soil, root and microbial respiration rates were 22.7%, 19.6%, and 23.5% lower in the fertilized plots than in the unfertilized plots, respectively. The temperature sensitivity (Q10) of soil respiration ranged from 1.81 to 2.04, and the Q10 value of microbial respiration decreased from 2.04 in the unfertilized plots to 1.84 in the fertilized plots. However, neither the Q10 value nor the patterns of total soil respiration were affected by N fertilization. In the two-factor model, soil temperature and moisture accounted for 69.9%-79.7% of the seasonal variations in soil respiration. These results suggest that N fertilization reduces the response of soil organic carbon decomposition to temperature change and may contribute to the increase of soil carbon storage under global warming in subtropical plantations.  相似文献   

10.
《植物生态学报》2021,44(12):1285
为了探讨人工林内优势乔木和林下灌草根际土壤氮矿化特征, 明确乔灌草根际土壤氮转化差异, 该研究以江西泰和千烟洲站区典型人工杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和湿地松(Pinus elliottii)林为对象, 在植被生长季初期(4月)和旺盛期(7月)分析3种人工林内乔木、优势灌木(檵木(Loropetalum chinense)、杨桐(Adinandra millettii)、格药柃(Eurya muricata))和草本(狗脊蕨(Woodwardia japonica)、暗鳞鳞毛蕨(Dryopteris atrata))根际土壤的净氮矿化速率、土壤化学性质及土壤微生物特征。结果发现: 1)物种、林型和取样季节显著影响了根际土壤净氮矿化速率(Nmin)、净铵化速率(Namm)和净硝化速率(Nnit)。马尾松和湿地松林内林下灌草根际土壤净氮矿化的季节敏感性高于乔木: 4月乔木根际土壤NminNamm显著高于大多数林下灌草, 而7月林下灌草根际土壤NminNamm显著提高, 与乔木不再具有显著差异, 与主成分综合得分方差分析的结果一致。一般情况下, 杉木林NminNnit显著高于马尾松林和湿地松林。7月净氮矿化显著高于4月。2)土壤铵态氮、硝态氮、全氮及土壤微生物量氮含量是影响根际土壤净氮矿化的主要因素。土壤化学性质对人工林根际土壤净氮矿化变异的贡献率为29.2%, 显著高于土壤微生物的解释率。充分考虑不同季节林下植被根际土壤的净氮矿化及其关键影响因素可为准确评估人工林生态系统养分循环状况提供重要支撑。  相似文献   

11.
长期模拟升温对崇明东滩湿地土壤微生物生物量的影响   总被引:1,自引:0,他引:1  
以崇明东滩芦苇湿地为对象,采用开顶室生长箱(Open top chambers OTCs)原位模拟大气升温试验,研究了连续升温8a对崇明东滩湿地0—40cm土层土壤微生物生物量碳氮含量的影响。结果表明:连续升温显著提高了崇明东滩湿地土壤微生物生物量碳氮含量,从土壤表层到深层(0—10,10—20,20—30,30—40cm),微生物生物量碳分别增加了39.32%、70.79%、65.20%、74.09%,微生物生物量氮分别增加了66.46%、178.27%、47.24%、64.11%。但升温对土壤微生物生物量的影响因不同土层和不同季节并未表现出统一的规律,长期模拟升温显著提高4月0—20cm土层和7月0—40cm土层微生物生物量碳氮含量,对10月0—40cm土层微生物生物量碳含量没有影响,但是显著提高了10月0—40cm土层微生物生物量氮含量,同时,微生物生物量碳氮比在7月也显著提高。相关分析表明:无论在升温条件还是在对照条件下,土壤温度、含水量、总氮与土壤微生物生物量碳氮及微生物生物量碳氮比均无相关关系,升温条件下,有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著正相关,但是在对照条件下有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著负相关。因此,土壤有机碳是影响土壤微生物生物量碳氮含量对长期模拟升温响应的重要生态因子。  相似文献   

12.
《植物生态学报》2016,40(8):775
Aims In the cold life zones, snow cover is a comprehensive environmental factor that directly influences soil temperature, soil water content, light and nutrient availability. Plants in these zones develop a series of unique mechanisms involving phenological characteristics, reproductive strategies, physiology and morphology to adapt to environmental changes. This paper is focused on the responses of plant leaf traits, height and biomass partitioning to variations in snow cover thickness, in order to better understand the responses of plant functional traits and specific adaptation strategies under global climate change scenarios. Methods Three transects were established along a gradient of snow cover in an alpine meadow of Mt. Kaka, in the eastern Qinghai-Xizang Plateau. Primula purdomii, Pedicularis kansuensis and Ranunculus tanguticus, which are three widely distributed and dominant ephemerals, were sampled and studied, particularly at their blooming stages. Plant height, specific leaf area (SLA) and biomass partitioning were measured accordingly. Important findings The values of SLA in Pedicularis kansuensis and R. tanguticus were relatively greater under better soil conditions; it was smaller in Primula purdomii with thick snow cover. The relationship between aboveground biomass and belowground biomass in Primula purdomii was allometric at sites with both thick and thin snow cover. No significant relationships were found between aboveground biomass and belowground biomass in Pedicularis kansuensis and R. tanguticus at some individual sites. However, when samples of the three species were pooled, the relationships between aboveground biomass and belowground biomass were allometric at all sites, which did not support isometric scaling hypothesis. In addition, on sites with either thick or thin snow cover, aboveground biomass had greater rate of accumulation than belowground biomass; whereas on sites with medium snow cover, the rate of biomass accumulation was greater for belowground component than aboveground component. Functional traits and biomass variables were better correlated in Primula purdomii and Pedicularis kansuensis than in R. tanguticus.  相似文献   

13.
采用时空替代法,选取15a(PF15)、25a(PF25)、30a(PF30)的人工油松林作为样地,并选取灌丛作为参考植被,研究了植被恢复过程中土壤微生物生物量C、N以及土壤养分的变化特征,同时探讨了它们之间的相互关系。研究结果表明随着恢复的进行,土壤质量得到了改善,主要表现为有机碳、全氮、粘粒含量、土壤含水量的上升和pH值、容重的下降。土壤微生物生物量C、N分别在155.00~885.64mg/kg和33.73~237.40mg/kg的范围内变化。土壤微生物生物量C、N在植被恢复的初期显著低于灌丛,而后随着恢复的进行逐步增长。土壤微生物生物量C、N与植被恢复时间的相关性没有达到统计学上的显著水平,但是土壤微生物生物量C与土壤有机碳、全氮、全磷呈显著正相关,这表明植被恢复过程中土壤微生物生物量与土壤养分状况关系密切,植被恢复通过改善土壤养分状况间接地影响土壤微生物生物量的变化。Cmic/TOC在1.38%~4.75%的范围内变化。Cmic/TOC随着植被恢复不断下降,Cmic/TOC与植被恢复时间和土壤有机碳呈显著负相关,这表明植被恢复过程中,惰性有机质积累导致供应土壤微生物的活性有机质减少,Cmic/TOC同时受土壤有机质的数量和质量影响。  相似文献   

14.
Aims Shrubland is one of the most widely distributed vegetation types in northern China. Previous studies on pattern and dynamics of plant biomass have been focused on forest and grassland ecosystems, while relevant knowledge on shrubland ecosystems is lacking. It is important to include shrublands in northern China to improve the accuracy in estimating the terrestrial ecosystem biomass in China.
Methods Based on investigations and samplings from 433 shrubland sites, we explored the distribution and allocation patterns of biomass in relation to climatic and soil nutrient factors of shrublands of temperate China.
Important findings The average shrubland biomass density in northern China is 12.5 t·hm-2. It decreases significantly from temperate deciduous shrubland in northeast to desert shrubland in northwest. The average biomass density of temperate deciduous shrubland, alpine shrubland, and desert shrubland is 14.4, 28.8, and 5.0 t·hm-2, respectively. Within temperate deciduous shrublands, plant biomass is lower in North China than in Northeast China. The average aboveground and belowground biomass density of shrub layer is 4.5 and 5.4 t·hm-2, respectively; while that of grass layer is 0.8 and 1.8 t·hm-2, respectively. Environmental factors affect biomass allocation across different plant organs. The belowground-aboveground biomass ratio of shrub exhibits no significant changes with environmental variables. The leaf-stem ratio increases with annual precipitation, and leaf biomass is low in arid region.  相似文献   

15.
Aims Natural secondary forest (NSF) and larch plantation are two of the predominant forest types in Northeast China. However, how the two types of forests compare in sustaining soil quality is not well understood. This study was conducted to determine how natural secondary forest and larch plantation would differ in soil microbial biomass and soil organic matter quality.Methods Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), soil organic carbon (SOC) and total nitrogen (TN) in the 0- to 15-cm and 15- to 30-cm soil layers were investigated by making chemical and biological measurements in the montane region of eastern Liaoning Province, Northeast China, during the growing season of 2008 in stands of NSF and Larix olgensis plantation (LOP).Important findings We found that soil MBC and MBN were significantly lower in the LOP than in the NSF. Both MBC and MBN declined significantly with increasing soil depth in the two types of stands. The ratios of MBC to SOC (MBC/SOC) and MBN to TN (MBN/TN) were also significantly lower in the LOP than in the NSF. Moreover, the values of MBC, MBC/SOC, and MBN/TN significantly varied with time and followed a similar pattern during the growing season, all with an apparent peak in summer. Our results indicate that NSF is better in sustaining soil microbial biomass and nutrients than larch plantation in the temperate Northeast China. This calls for cautions in large-scale conversions of the native forests to coniferous plantations as a forest management practice on concerns of sustaining soil productivity.  相似文献   

16.
Aims Elevated atmospheric CO2 has the potential to enhance the net primary productivity of terrestrial ecosystems. However, the role of soil microorganisms on soil C cycling following this increased available C remains ambiguous. This study was conducted to determine how quality and quantity of plant litter inputs would affect soil microorganisms and consequently C turnover.Methods Soil microbial biomass and community structure, bacterial community-level physiological profile, and CO2 emission caused by different substrate C decomposition were investigated using techniques of biological measurements, chemical and stable C isotope analysis, and BIOLOG-ECO microplates in a semiarid grassland ecosystem of northern China in 2006 and 2007 by mixing three contrasting types of plant materials, C3 shoot litter (SC 3), C3 root litter (RC 3), and C4 shoot litter (SC 4), into the 10- to 20-cm soil layer at rates equivalent to 0 (C 0), 60 (C 60), 120 (C 120) and 240 g C m ?2 (C 240).Important findings Litter addition significantly enriched soil microbial biomass C and N and resulted in changes in microbial structure. Principal component analysis of microbial structure clearly differentiated among zero addition, C3 -plant-derived litter, and C4 -plant-derived litter and among shoot- and root-derived litter of C3 plants; soil microorganisms mainly utilized carbohydrates without litter addition, carboxylic acids with C3 -plant-derived litter addition and amino acids with C4 -plant-derived litter addition. We also detected stimulated decomposition of older substrate with C4 -plant-derived litter inputs. Our results show that both quality and quantity of belowground litter are involved in affecting soil microbial community structure in semiarid grassland ecosystem.  相似文献   

17.
为分析比较不同浓度石灰氮对连作黄瓜田土壤环境的作用效果,通过2年温室定位试验,在黄瓜秸秆还田的基础上以不施石灰氮为对照(CK),研究施用\[高浓度石灰氮1350 kg·hm-2(CaCN2 90)、中浓度石灰氮900 kg·hm-2(CaCN2 60)、低浓度石灰氮450 kg·hm-2(CaCN2 30)\]对连作黄瓜土壤微生物生物量碳(SMBC)、微生物生物量氮(SMBN)及酶活性的影响.结果表明:与其他处理相比,CaCN2 90显著降低苗期0~10 cm 土层SMBC,但增加了初瓜期后0~20 cm土层SMBC.施用石灰氮处理均显著提高了末瓜期0~20 cm土层SMBC及盛瓜期至末瓜期0~10 cm土层SMBN,但第1年(2012年)不同石灰氮用量间无明显规律,第2年(2013年)盛瓜期后SMBN随着石灰氮施用浓度的增加而升高.施用石灰氮有利于秸秆的腐熟,提高土壤有机质含量,且石灰氮浓度越高越有利于秸秆的腐熟.相比对照,施用石灰氮能有效提升土壤脲酶、过氧化氢酶和多酚氧化酶活性,其中脲酶活性随石灰氮浓度的增加升高,而多酚氧化酶活性随石灰氮浓度的增加而降低,CaCN2 60可有效提高过氧化氢酶活性.相关分析表明:土壤有机质、脲酶及过氧化氢酶活性与SMBC、SMBN呈极显著正相关,多酚氧化酶活性与SMBC、SMBN呈显著负相关.表明黄瓜秸秆还田后施用石灰氮900 kg·hm-2能够改善温室黄瓜连作田土壤环境,有效减缓温室黄瓜连作障碍.  相似文献   

18.
《植物生态学报》2016,40(4):364
Aims
Accurate estimation of carbon density and storage is among the key challenges in evaluating ecosystem carbon sink potentials for reducing atmospheric CO2 concentration. It is also important for developing future conservation strategies and sustainable practices. Our objectives were to estimate the ecosystem carbon density and storage of Picea schrenkiana forests in Tianshan region of Xinjiang, and to analyze the spatial distribution and influencing factors.
Methods
Based on field measurements, the forest resource inventories, and laboratory analyses, we studied the carbon storage, its spatial distribution, and the potential influencing factors in Picea schrenkiana forest of Tianshan. Field surveys of 70 sites, with 800 m2 (28.3 m × 28.3 m) for plot size, was conducted in 2011 for quantifying arbor biomass (leaf, branch, trunk and root), grass and litterfall biomass, soil bulk density, and other laboratory analyses of vegetation carbon content, soil organic carbon content, etc.
Important findings
The carbon content of the leaf, branch, trunk and root of Picea schrenkiana is varied from 46.56% to 52.22%. The vegetation carbon content of arbor and the herbatious/litterfall layer was 49% and 42%, respectively. The forest biomass of Picea schrenkiana was 187.98 Mg·hm-2, with 98.93% found in the arbor layer. The biomass in all layers was in the order of trunk (109.81 Mg·hm-2) > root (39.79 Mg·hm-2) > branch (23.62 Mg·hm-2) > leaf (12.76 Mg·hm-2). From the age-group point of view, the highest and the lowest biomass was found at the mature forest (228.74 Mg·hm-2) and young forest (146.77 Mg·hm-2), respectively. The carbon density and storage were 544.57 Mg·hm-2 and 290.84 Tg C, with vegetation portion of 92.57 Mg·hm-2 and 53.14 Tg C, and soil portion of 452.00 Mg·hm-2 and 237.70 Tg C, respectively. The spatial distribution of carbon density and storage appeared higher in the western areas than those in the eastern regions. In the western Tianshan Mountains (e.g., Ili district), carbon density was the highest, whereas the central Tianshan Mountains (e.g., Manas County, Fukang City, Qitai County) also had high carbon density. In the eastern Tianshan Mountains (e.g., Hami City), it was low. This distribution seemed consistent with the changes in environmental conditions. The primary causes of carbon density difference might be a combined effects of multiple environmental factors such as terrain, precipitation, temperature, and soil.  相似文献   

19.
《植物生态学报》2016,40(6):594
Aims Our objective was to investigate the responses of maize photosynthesis and growth to repeated drought.Methods Maize seedlings were exposed to different soil water deficit for three weeks, then rewatering for one week, and again to different water deficit for three weeks, to examine the effects of repeated drought on photosynthesis and growth.Important findings After the first water deficit treatments, under severe drought, plant height, total leaf area of individual plant, shoot and root biomass declined significantly, also transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), net photosynthetic rate (Pn), maximum net photosynthetic rate (Amax), but light compensation point and dark respiration rate increased significantly. Under medium drought, plant height, leaf area, and shoot biomass decreased significantly, but root biomass did not vary, hence, the ratio of roots to shoots (R/S) increased. Moreover, plants did not show significant differences in photosynthetic parameters. After rewatering, photosynthesis and growth rate of plants previously exposed to water deficit could recover to the levels of well-watered plants, but plant height and leaf area did not recover to the levels of the control. When maize were subjected to recurrent drought, plants pre-exposed to medium drought showed no significant difference in plant height, biomass, and photosynthetic parameters, but a significant decrease in leaf area, compared to plants only exposed to second medium drought. Plants pre-exposed to severe drought had significantly higher Tr, Gs, Ci, Pn, Amax, and, apparent quantum yield but significantly lower plant height, leaf area, and biomass than plants without previous exposure. These results indicated that the first severe drought significantly reduced photosynthetic capacity and maize growth, rewatering could recover photosynthesis and growth rate to the levels of well-watered plants, but could not eliminate the adverse influence of the first drought on growth. The first medium drought could stimulate the growth of maize root system and significantly increased R/S, which can enhance maize drought resistance to subsequent repeated drought, and maintain the total biomass in the control level; the first severe drought could enhance maize drought resistance to subsequent repeated drought in the aspect of photosynthesis, but could not compensate for the adverse effect of early drought on plant growth. Hence, in practice, drought hardening should be limited in the level of medium drought, and avoiding severe drought.  相似文献   

20.
荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应   总被引:1,自引:0,他引:1  
采用空间序列代替时间演替的方法,分析宁夏中北部盐池县荒漠草地不同沙漠化阶段(荒漠草地、固定沙地、半固定沙地和流动沙地)土壤微生物生物量(SMB)和微生物熵(qMB)的变化特征及其影响因子.结果表明:从荒漠草地到流动沙地,土壤微生物生物量碳、氮、磷分别降低46.1%、80.8%和30.0%.随着荒漠草地沙漠化程度的加剧,土壤微生物熵碳(qMBC)、土壤微生物熵氮(qMBN)、土壤微生物熵磷(qMBP)均表现为荒漠草地>固定沙地>半固定沙地>流动沙地,而土壤-微生物化学计量不平衡性(C∶Nimb、C∶Pimb、N∶Pimb)基本呈增加趋势.土壤微生物生物量氮与C∶Nimb呈显著正相关,与N∶Pimb呈显著负相关;土壤微生物生物量磷与C∶Pimb呈显著正相关.冗余分析(RDA)显示,土壤生态化学计量(C∶N、C∶P)对微生物熵碳的负效应最明显.荒漠草地沙漠化显著影响土壤微生物生物量和微生物熵.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号