首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
沼泽湿地是大气甲烷(CH4)的重要来源, 但有关亚热带亚高山沼泽湿地CH4排放的研究却鲜有报道, 特别是对不同覆被类型泥炭藓沼泽湿地CH4排放量的精确估算及其与环境因子的关系尚不清楚。该研究选择鄂西南亚高山泥炭藓沼泽湿地为研究区域, 于2018年11月-2019年10月间, 使用静态箱-气相色谱仪法原位测定3种覆被类型泥炭藓沼泽湿地CH4通量, 同步记录大气和地下5 cm土壤的温度以及地下水位变化。结果表明: (1)光照下, 裸露地(B)、泥炭藓(Sphagnum paluster)(S)、金发藓(Polytrichum commune)(P) 3种覆被类型泥炭藓沼泽湿地CH4-C通量全年变化范围分别为: 0.012-1.372、0.022-1.474、0.027-3.385 mg·m-2·h-1; 遮光处理下, B、S、P 3种覆被类型泥炭藓沼泽湿地CH4-C通量的全年变化范围分别为: 0.012-1.372、0.009-1.839、0.017-2.484 mg·m-2·h-1, 均为CH4排放源。同时, 光照条件下不同覆被泥炭藓沼泽湿地CH4排放量略大于黑暗条件, 但差异不明显。(2)不同覆被类型泥炭藓沼泽湿地CH4排放存在明显的季节变化规律, 即: 夏季>秋季>春季>冬季, 其中夏季CH4排放量显著大于其他季节, 占全年的57%-84%。该研究发现泥炭藓沼泽湿地CH4通量均与气温和地下5 cm土壤温度极显著相关, 且CH4排放量随温度升高呈指数增加, 表明温度是影响泥炭藓沼泽湿地CH4排放时间变化的主要环境因子。(3) 3种覆被类型泥炭藓沼泽湿地的年平均和年累计CH4排放量均依次为: P > S > B, P显著大于B。该研究发现植被类型与泥炭藓沼泽湿地CH4排放量存在显著相关性, 表明覆被类型是影响泥炭藓沼泽湿地CH4排放量空间变异的主要因子。(4) 3种覆被类型泥炭藓沼泽湿地CH4排放量均与地下水位变化不相关。该研究进一步丰富了泥炭藓沼泽湿地CH4排放规律, 同时也为区域碳循环提供了详实的基础数据。  相似文献   

2.
探索和揭示生物多样性的空间格局和维持机制是生态学和生物地理学研究的热点内容, 但综合物种、系统进化和功能属性等方面的多样性海拔格局研究很少。该文以关帝山森林群落为研究对象, 综合物种、谱系和功能α和β多样性指数, 旨在初步探讨关帝山森林群落多样性海拔格局及其维持机制。研究结果表明: 随着海拔的升高(1 409-2 150 m), 关帝山森林群落物种丰富度指数(S)、谱系多样性指数(PD)和功能丰富度指数(FRic)整体上表现出上升的趋势, 特别是海拔1 800 m以上区域。随着海拔的升高, 总β多样性(βtotal)和更替(βrepl)上升趋势明显, 而丰富度差异(βrich)则逐渐下降。不同生活型植物的物种、谱系和功能多样性海拔格局差异较大。随着海拔的升高, 草本植物S和物种多样性指数(H′)上升趋势高于木本植物。影响草本植物S分布的主要因素是地形因子, 而影响木本植物S分布的主要因素是历史过程。随着海拔的升高, 木本植物βtotal上升趋势要比草本植物明显。随着海拔的升高, 木本植物βreplβrich分别表现出单峰格局和“U”形格局, 而草本植物βreplβrich则分别表现出单调递增和单调递减的格局。随着环境差异和地理距离的增加, 群落间物种、谱系和功能β多样性显著增加。环境差异(环境过滤)对木本植物的β多样性具有相对较强的作用; 而环境差异(环境过滤)和地理距离(扩散限制)共同作用于草本植物的β多样性。  相似文献   

3.
碳(CO2、CH4)、氮(N2O)和水汽(H2O)等温室气体的交换通量是生态系统物质循环的核心, 是地圈-生物圈-大气圈相互作用的纽带。稳定同位素光谱和质谱技术和方法的进步使碳稳定同位素比值(δ 13C)和氧稳定同位素比值(δ 18O)(CO2)、δ 13C (CH4)、氮稳定同位素比值(δ 15N)和δ 18O (N2O)、氢稳定同位素比值(δD)和δ 18O (H2O)的观测成为可能, 与箱式通量观测技术和方法结合可以实现土壤、植物乃至生态系统尺度温室气体及其同位素通量观测研究。该综述以CO2及其δ 13C通量的箱式观测技术和方法为例, 概述了箱式通量观测系统的基本原理及分类, 阐述了系统设计的理论要求和假设, 综述了从野外到室内土壤、植物叶-茎-根以及生态系统尺度箱式通量观测研究的应用进展及问题, 展望了气体分析精度和准确度、观测数据精度和准确度以及观测数据的代表性评价在箱式通量观测研究中的重要性。  相似文献   

4.
植物排放N2O和CH4的研究   总被引:1,自引:0,他引:1  
N2O和CH4是2种重要的温室气体, 但其排放源尚未得到充分鉴别。1990年和2006年先后报道植物能排放N2O和CH4, 并日益受到广泛的关注。然而, 迄今为止对植物排放这2种气体的研究均是分开单独进行的。该文以8种陆生草本植物为研究对象, 首次同步考察了新鲜离体植物地上部排放N2O和CH4的通量。研究结果表明: 8种植物均能排放这2种气体。其中, 黑麦草(Lolium perenne)、抱茎苦荬菜(Ixeridium sonchifolium)和菠菜(Spinacia oleracea)的CH4通量较高, 分别为165.38、 52.28和21.64 ngCH4·g–1dw·h–1; 抱茎苦荬菜、蒙古蒿(Artemisia mongolica)、大豆(Glycine max)和菠菜的N2O通量较高, 分别为7.19、6.92、5.44和4.05 ngN2O·g–1dw·h–1。研究结果不仅为植物本身既能排放N2O又能排放CH4在植物中可能具有普遍性提供了进一步的实验依据, 而且为深入研究其机理找到了几种适宜的植物种(如抱茎苦荬菜、菠菜)。  相似文献   

5.
目前, 有关增温条件下荒漠生物土壤结皮(BSCs)-土壤系统与大气之间主要温室气体(CO2、CH4和N2O)通量变化的研究十分匮乏, 以致很难准确地评估荒漠生态系统温室气体通量对气候变暖的响应与反馈的方向和程度。该文选择腾格里沙漠东南缘天然植被区由藻类、藓类以及二者混生的3种类型的BSCs覆盖土壤为研究对象, 以开顶式生长室(OTC)为增温方式模拟全球变暖, 采用静态箱-气相色谱法探究了2012年7月至2013年6月增温和不增温处理下CO2、CH4和N2O通量的变化特征。结果表明: 增温和结皮类型对CO2、CH4和N2O通量没有显著影响。采样日期、结皮类型与采样日期, 以及增温与结皮类型和采样日期的互作显著影响CO2和CH4通量, 增温和采样日期互作显著影响CH4通量。BSCs-土壤系统的CO2、CH4和N2O年通量及其增温潜能在增温和不增温处理下的差异均不显著。CO2通量与5 cm深度的土壤温度呈显著的指数正相关关系, 与10 cm深度的土壤湿度呈线性正相关关系; 藓类、混生结皮的CH4通量与5 cm深度的土壤温度和10 cm深度的土壤湿度均呈显著的线性负相关关系; 3种结皮类型的N2O通量与5 cm深度的土壤温度均无相关关系, 藓类结皮的N2O通量与10 cm深度的土壤湿度呈显著的线性负相关关系。藓类结皮的CO2和CH4在增温和不增温两种处理下的通量差异与5 cm深度的土壤温度差异呈显著的负线性相关, 藻类结皮N2O的通量差异与温度差异呈近似正相关关系(p = 0.051)。以上结果说明: 在全球变暖的背景下, 荒漠BSCs-土壤系统主要温室气体通量不会有明显的变化, 意味着荒漠生态系统温室气体的排放可能对气候变暖没有明显的 反馈。  相似文献   

6.
《植物生态学报》2014,38(8):888
选择华南海岸典型沙地, 采用全挖法, 对4种典型沙生植物木麻黄(Casuarina equisetifolia)、厚藤(Ipomoea pes-caprae)、老鼠艻(Spinifex littoreus)和狗牙根(Cynodon dactylon)的根系构型进行了研究。结果表明: 1)狗牙根和老鼠艻的根系总体分支率显著高于木麻黄, 厚藤最小, 说明大部分草本植物在生长过程中通过增加根系分支率, 提高物质传输效率, 除木麻黄外, 其他3个物种枝系均平卧伸展, 易于受到沙埋生出不定根, 进一步提高其物质传输效率; 2) 4种沙生植物根系平均连接长度最大的为木麻黄, 平均连接长度为19.25 cm, 且相对其他3个物种传导根所占的比例最大, 说明木麻黄通过增加平均连接长度以减少根系内部对土壤资源的竞争, 并提高传导根的比例, 以增加资源传输效率; 3) 4种沙生植物根系构型均倾向于叉状分支, 其中草本植物的根系构型更为接近, 说明草本植物受到的资源胁迫相对较小, 有利于在海岸沙地恢复中快速定居; 与内陆地区沙生植物相比, 海岸沙生植物在土壤资源的获取及空间拓展方面表现出显著的差异, 反映出不同生境条件下物种对生境胁迫的适应策略。因此, 海岸沙地前缘植被恢复应以草本植物为主, 尤其是具有不定根的物种, 乔木则不适合。  相似文献   

7.
《植物生态学报》2018,42(8):863
分株间光合产物的整合作用对克隆植物适应生存环境具有重要作用, 但有关光合产物传输方向对克隆植物根际土壤微生物过程的影响尚不清楚。该研究以根状茎克隆植物蓉城竹(Phyllostachys bissetii)为研究对象, 通过剪除分株地上部分控制光合产物传输方向(顶向传输和基向传输), 研究光合产物传输方向对蓉城竹分株根际土壤微生物过程的影响, 其中顶向传输组是将远端分株地上部分剪除(保留地面以上20 cm), 近端分株自然生长; 基向传输组则是将近端分株地上部分剪除(保留地面以上20 cm), 远端分株自然生长。两组实验中保持根状茎连接或切断处理。测定了地上部分被剪除分株根际土壤中碳和氮有效性、微生物生物量参数以及氮转化相关土壤胞外酶活性等指标。结果表明: 光合产物顶向传输中, 根状茎保持连接的远端分株根际土壤总有机碳(TOC)、溶解性有机碳(DOC)、溶解性有机氮(DON)、铵态氮(NH4 +-N)、硝态氮(NO3 --N)含量显著高于切断的远端分株, N-乙酰基-β-D-氨基葡萄糖苷酶(NAGase)、多酚氧化酶(POXase)和脲酶(Urease)活性显著升高, 光合产物的顶向传输对远端分株根际碳、氮有效性和根际微生物过程产生了显著性影响; 光合产物的基向传输中, 根状茎保持连接的近端分株根际与切断分株相比具有更高的微生物生物量氮(MBN)含量、Urease、POXase活性, 较低的NAGase活性和NH4 +-N、NO3 --N含量, 但碳的有效性无显著性差异。蓉城竹分株间光合产物的非对称性传输对根际微生物过程的影响可能是对动物取食或人为砍伐等干扰的有益权衡, 这有助于理解克隆植物对生存环境的种群适应机制。  相似文献   

8.
《植物生态学报》2016,40(9):902
AimsThe Zoigê Plateau, as a very important wetland distribution region of China, was the major methane (CH4) emission center of the Qinghai-Xizang Plateau. The objective of this study is to study the effects of microtopographic changes on CH4 emission fluxes from five plots across three marshes in the littoral zone of the Zoigê Plateau wetland.
Methods CH4 emission fluxes were measured in five plots across three marshes in Zoigê Plateau wetland using the closed chamber method and Fast Greenhouse Gas Analyzer from May to October in 2014.
Important findings During the growing season, mean CH4 emission fluxes from the permanently flooded hollow (P-hollow) and hummock (P-hummock) in the Zoigê Plateau wetland were 68.48 and 40.32 mg·m-2·h-1, while mean CH4 emission fluxes from the seasonally flooded hollow (S-hollow) and hummock (S-hummock) were 2.38 and 0.63 mg·m-2·h-1. CH4 emission fluxes from non-flooded lawn was 3.68 mg·m-2·h-1. Mean CH4 emission fluxes from five plots across three sites was 23.10 mg·m-2·h-1, with a standard deviation of 30.28 mg·m-2·h-1 and the coefficient of variation was 131%. We also found that there was a significant and positive correlation between mean CH4 emission fluxes and mean water table depth in the five plots across three sites (R2 = 0.919, p < 0.01), indicating that water table depth was controlling the spatial variability of CH4 emission fluxes from the Zoigê Plateau wetland on microtopography. CH4 emission fluxes in the P-hollow, P-hummock, and S-hummock showed an obvious seasonal pattern, which was not observed in the lawn and S-hollow. However, CH4 emission peaks were observed in all the plots during summer and/or autumn, which could be closely related to the water table depth, soil temperature, and the magnitude of litter mass. In addition, we found that the CH4 emission flux in the P-hollow was much higher than the other four plots in the Zoigê Plateau wetland, suggesting that CH4 in the P-hollow could be often transported to the surface by ebullition and CH4 emission from the Zoigê Plateau wetland may be under estimated in the past.  相似文献   

9.
We have screened a number of plants from the Indian soil for potential antioxidant properties out of which fifteen extracts were found to be positive. Leaves/bulk from the plants were crushed and extracted with organic solvents by three different ways. The first group of plants were extracted with CHCL3:CH3OH (2:1), evaporated, partitioned between petroleum ether and methanol (9:1), aqueous methanolic part re-partitioned between methanol: H2O (4:1) and dichloromethane. Methanol was evaporated from the aqueous methanolic part and extracted with n-butanol. The second group of plants were extracted with methanol followed by partitioning between petroleum ether and CH3OH. The rest of the extraction procedure was the same as above. A third extraction procedure was used for Ocimum sanctum which after extraction with CHCL3:CH3OH (2:l), partitioned between CCL4 and CH3OH:H2O (9:1). Aqueous methanolic part was repartitioned between CH3OH:H2O (4:1) and CHCI3 and CHCI3 soluble part was used for the study. Free radical scavenging activities of the plant extracts were examined by chemiluminescence method. Peroxyl radical was generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), superoxide radical (O2--) from xanthine/xanthine oxidase (XO) and hydroxyl radical (OH) from Xanthine/XO/ FeClJ EDTA. In addition, O2-- and OH. scavenging activities were also determined by cytochrome C reduction and deoxyribose oxidation methods, respectively. The results of this study demonstrate that these plant extracts possess potent antioxidant activities.  相似文献   

10.
《植物生态学报》2017,41(3):290
Aims Desert soils play an important role in the exchange of major greenhouse gas (GHG) between atmosphere and soil. However, many uncertainties existed in understanding of desert soil role, especially in efflux evaluation under a changing environment. Methods We conducted plot-based field study in center of the Gurbantünggüt Desert, Xinjiang, and applied six rates of simulated nitrogen (N) deposition on the plots, i.e. 0 (N0), 0.5 (N0.5), 1.0 (N1), 3.0 (N3), 6.0 (N6) and 24.0 (N24) g·m-2·a-1. The exchange rates of N2O, CH4 and CO2 during two growing seasons were measured for two years after N applications. Important findings The average efflux of two growing seasons from control plots (N0) were 4.8 μg·m-2·h-1, -30.5 μg·m-2·h-1 and 46.7 mg·m-2·h-1 for N2O, CH4 and CO2, respectively. The effluxes varied significantly among seasons. N0, N0.5 and N1 showed similar exchange of N2O in spring and summer, which was relatively higher than in autumn, while the rates of N2O in N6 and N24 were controled by time points of N applications. The uptake of CH4 was relatively higher in both spring and summer, and lower in autumn. Emission of CO2 changed minor from spring to summer, and greatly decreased in autumn in the first measured year. In the second year, the emission patterns were changed by rates of N added. N additions generally stimulated the emission of N2O, while the effects varied in different seasons and years. In addition, no obvious trends were found in the emission factor of N2O. The uptake of CH4 was not significantly affected by N additions. N additions did not change CO2 emissions in the first year, while high N significantly reduced the CO2 emissions in spring and summer of the second year, without affected in autumn. Structure equation model analysis on the factors suggested that N2O, CH4 and CO2 were dominantly affected by the N application rates, soil temperature or moisture and plant density, respectively. Over the growing seasons, both the net efflux and the global warming potential caused by N additions were small.  相似文献   

11.
《植物生态学报》2014,38(6):640
叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO2·g N-1·s-1。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。  相似文献   

12.
《植物生态学报》2013,37(11):1043
植物碳利用效率(CUE)指净初级生产力与总初级生产力的比率, 它不仅反映了植被生态系统将大气中CO2转化为生物量的能力和固碳潜力, 而且可确定呼吸对植被生产力的影响。CUE是比较不同生态系统碳循环差异的重要参数, 了解生态系统CUE有助于分析陆地生态系统是碳源还是碳汇, 对于预测全球变化和人类干扰对森林碳收支的影响具有重要意义。我国在森林CUE研究方面还十分欠缺。该文在介绍森林CUE计算方法和测定技术的基础上, 综述了植被、气象、森林经营等因子对森林CUE的影响, 得出主要结论: (1)关于不同森林植被类型CUE变化有两种截然相反的观点, 即: 恒定CUE和变量CUE。越来越多的研究支持第二种观点, 不同生态系统、不同森林类型、不同物种和植物发育阶段的CUE存在较大差异, 森林CUE较灌丛和草地低, 落叶林比混交林和常绿林具有较高的CUE, 热带森林CUE通常低于温带森林, CUE与植被演替和林龄相关, 森林地上、地下部分和不同组织的CUE不同, 以树干为最高; (2)植被的CUE与气温相关, 全球尺度上, 森林植被年平均CUE与年平均气温呈抛物线关系, 温带、寒带、干旱地区植物呼吸的温度适应驱动其较高的CUE; CUE随着降水量的增加而减少, 在水分充足或过剩的地区保持不变; 光照减弱降低维持呼吸系数, 增加生长呼吸系数, 导致植物CUE降低, 生长在高光照下的植物CUE高于低光照下的植物; (3) CO2浓度升高引起植物CUE的升高或降低, 也有人认为CO2浓度升高对森林CUE没有影响, CO2浓度升高对CUE的影响可能取决于树木年龄或基因型; (4)生长在土壤瘠薄、低温、干旱等胁迫环境下的植物CUE通常比生长在适宜环境下的植物具有较大的可塑性, 施肥、灌溉和择伐等管理措施影响森林CUE; (5)植物CUE具有明显的季节变化, 温带森林以春季CUE为最高。建议今后森林CUE研究应着重围绕以下3个关键问题: (1)从不同空间尺度和生态系统层次, 探讨森林CUE的变异特征及其驱动机制; (2)从不同时间尺度, 探讨森林CUE动态过程与机制; (3)森林CUE对气候变化的响应与适应。  相似文献   

13.
《植物生态学报》2016,40(10):1049
Aims It is important to study the effects of land use change and reduced precipitation on greenhouse gas fluxes (CO2, CH4 and N2O) of forest soils. Methods The fluxes of CO2, CH4 and N2O and their responses to environmental factors of primary forest soil, secondary forest soil and artificial forest soil under a reduced precipitation regime were explored using the static chamber and gas chromatography methods during the period from January to December in 2014. Important findings Results indicate that CH4 uptake of primary forest soil ((-44.43 ± 8.73) μg C·m-2·h-1) was significantly higher than that of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) and the artificial forest soil ((-10.52 ± 2.11) μg C·m-2·h-1). CH4 uptake of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) was significantly higher than that of the artificial forest ((-10.52 ± 2.11) μg C·m-2·h-1). CO2 emissions of the artificial forest soil ((106.53 ± 19.33) μg C·m-2·h-1) were significantly higher than that of the primary forest soil ((49.50 ± 8.16) μg C·m-2·h-1) and the secondary forest soil ((63.50 ± 5.35) μg C·m-2·h-1) (p < 0.01). N2O emissions of the secondary forest soil ((1.91 ± 1.22) μg N·m-2·h-1) were higher than that of the primary forest soil ((1.40 ± 0.28) μg N·m-2·h-1) and the artificial forest soil ((1.01 ± 0.86) μg N·m-2·h-1). Reduced precipitation (-50%) had a significant inhibitory effect on CH4 uptake of the artificial forest soil, while it enhanced CO2 emissions of the primary forest soil and the secondary forest soil. Reduced precipitation had a significant inhibitory effect on CO2 emissions of the artificial forest soil and N2O emissions of the secondary forest (p < 0.01). Reduced precipitation promotes N2O emissions of the primary forest soil and the artificial forest soil. CH4 uptake of the primary forest and the secondary forest soil increased significantly with the increase of soil temperature under natural and reduced precipitation. CO2 and N2O emission fluxes of the primary forest soil, secondary forest soil and artificial forest soil were positively correlated with soil temperature (p < 0.05). Soil moisture inhibited CH4 uptake of the secondary forest soil and the artificial forest soil (p < 0.05). CO2 emissions of the primary forest soil were significantly positively correlated with soil moisture (p < 0.05). N2O emissions of primary forest soil and secondary forest soil were significantly correlated with the nitrate nitrogen content (p < 0.05). It was implied that reduced precipitation and land use change would have significant effects on greenhouse gas emissions of subtropical forest soils.  相似文献   

14.
微生物氧化是大气甲烷唯一的生物汇.认识草原甲烷(CH4)通量对不同利用方式的响应是制定低碳高效草原管理体系的基础.本研究通过测定内蒙古中部典型草原在放牧、割草和围封管理下生态系统的CH4通量和土壤甲烷氧化菌丰度,旨在确定不同利用方式对内蒙古典型草原生态系统CH4吸收的影响,验证甲烷氧化菌功能基因(pmoA)丰度调控CH4通量.测定草原是连续5年实施4种不同利用处理的试验草原,4个处理为全植物生长季(5—9月)放牧(T1)、春夏5月和7月放牧(T2)、秋季割草(T3)和围封禁牧(T0).在测定植物生物量和土壤理化特征的基础上,采用静态箱置法测定草原植物生长季CH4通量,采用分子技术测定草原表层土壤甲烷氧化菌pmoA功能基因的丰度.结果表明: 放牧显著促进CH4吸收,增加甲烷氧化菌丰度(即每克干土pmoA功能基因拷贝数),其在生长季的变化范围是6.9×104~3.9×105.T1处理下植物生长季的CH4平均吸收量为(68.21±3.01) μg·m-2·h-1,显著高于T2、T3和T0处理22.1%、37.5%和30.9%.草原CH4吸收与甲烷氧化菌丰度呈极显著正相关,与土壤砂粒占比呈显著正相关,而与土壤粉粒占比、土壤水分含量、土壤铵态氮和硝态氮含量,以及植物地上生物量呈显著负相关.表明不同利用方式下内蒙古典型草原都是CH4的汇,而适度放牧可增加草原土壤砂粒占比,降低土壤无机氮含量和植被生物量,提高土壤甲烷氧化菌丰度和CH4吸收.本结果对制定低排放草原管理体系具有重要意义.  相似文献   

15.
大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化不仅改变了森林土壤理化性质,而且影响了植物的生长和微生物活性,导致森林土壤碳、氮循环发生改变,进而影响土壤CH4的吸收.本研究综述了森林土壤CH4吸收的重要性,森林土壤CH4吸收对大气CO2浓度升高、降水格局改变、全球氮沉降增加和土地覆盖变化等全球变化的响应差异及驱动机制.大气CO2浓度升高抑制土壤CH4吸收;降水减少倾向于促进土壤CH4吸收;外源氮输入抑制富氮森林土壤CH4吸收,而对贫氮森林土壤CH4吸收则表现为促进或不影响;森林转化为草地、农田或人工林会减少土壤CH4的吸收量,而植树造林则会增加土壤CH4的吸收量.今后的研究重点是探讨全球变化对森林土壤CH4吸收产生长期影响和综合效应,并借助分子生物学方法进一步探究土壤CH4吸收的微生物学机制.  相似文献   

16.
通过测定上海市青浦区东风港百慕大、白花三叶草、高羊茅和白茅等4种典型滨岸草本植物各组织以及不同垂直深度土壤有机质δ13C值,对滨岸草地生态系统的植物-土壤碳稳定同位素特征进行了分析.结果表明: 白花三叶草、高羊茅属于C3植物,百慕大、白茅属于C4植物,其茎叶、凋落物和根系各组织间δ13C值无显著差异.C3和C4植物样带表层土壤有机质δ13C值随着土壤深度递增而呈现截然不同的变化特征,这与样带本底δ13C值以及碳稳定同位素分馏效应有关,同时还受植物根系分布深度的影响.植物输入是土壤有机碳(SOC)的最主要来源,植物有机体δ13C组成对土壤有机质δ13C值有直接影响,植物各组分δ13C值与土壤有机质δ13C值均存在极显著相关.4种草本植物样带SOC含量与δ13C值均呈极显著相关,其中,C3植物样带SOC含量与δ13C值呈线性负相关,C4植物样带SOC含量与δ13C值呈线性正相关.  相似文献   

17.
《植物生态学报》2018,42(2):143
稳定同位素红外光谱(IRIS)技术克服了传统的大气CO2气瓶采样-同位素质谱(IRMS)技术时间分辨率低且耗时费力的缺点, 可以实现高时间分辨率和高精度的大气CO2碳同位素组成(δ 13C)和氧同位素组成(δ 18O)的原位连续测定。基于IRIS技术测量CO2 δ 13C和δ 18O的误差来源主要包括δ 13C和δ 18O测量值对CO2浓度变化的非线性响应(浓度依赖性)以及对环境条件变化的敏感性导致的漂移(时间漂移)。如何有效地校正浓度依赖性和时间漂移导致的误差是IRIS仪器应用的前提。该综述阐述了δ 13C和δ 18O测量值的浓度依赖性产生的理论基础, 回顾了浓度依赖性的理论校正和经验方程校正方法和应用; 回顾了时间漂移的校正原理、方法和应用; 概述了数据溯源至国际标准的原理、方法与应用现状。结合实际情况推荐利用3个或3个以上已知CO2浓度和δ 13C、δ 18O真值的CO2标准气体涵盖待测气体CO2浓度的浓度依赖性校正, 设置适当的校正频率校正时间漂移并进行数据溯源。指出应该加强不同仪器和校正方法的比对研究; 采用IRIS技术测定CH4、N2O和H2O同位素组成也可以采取类似的校正方法。  相似文献   

18.
揭示玉米(Zea mays)和花生(Arachis hypogaea)间作提高花生对弱光利用能力的光合特点及磷(P)肥效应, 对阐明间作花生适应弱光的光合机理和提高间作花生的产量具有重要意义。该试验于2011-2012年在河南科技大学试验农场分析了间作花生功能叶的叶绿素含量与构成、光响应曲线和CO2响应曲线特点和荧光参数。结果表明: 与单作花生相比, 施P与不施P条件下玉米和花生间作显著(p < 0.01)提高了花生功能叶的叶绿素b含量, 降低了叶绿素a/b, 显著提高了光系统II最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)、光化学猝灭系数(qP)、表观量子效率(AQY)和弱光时的光合速率, 显著降低了气孔导度、二磷酸核酮糖羧化酶羧化速率(Vcmax)、电子传递速率(Jmax)和磷酸丙糖利用速率(TPU); 与不施P相比, 施P有利于提高间作花生功能叶的叶绿素含量, 显著提高了ΦPSIIqPVcmaxJmaxTPU, 说明间作花生通过提高功能叶的叶绿素b含量, 改变叶绿素构成, 提高了光系统II的Fv/FmΦPSIIqP, 增强了对光能的捕获和转化能力, 提高了对弱光的利用能力, 而并非提高了对CO2的羧化固定能力; 施P有利于提高间作花生对弱光的利用能力和产量, 土地当量比提高了6.2%-9.3%。  相似文献   

19.
简要综述了近年来国内外在大气CO2浓度增加对微量气体交换影响方面的研究进展.首先介绍了有关大气CO2浓度增加的研究技术和方法,比较了目前两种常用技术开顶箱(OTC)和开放式空气CO2增加(FACE)方法的优缺点,然后着重阐述了用OTC和FACE研究陆地生态系统CH4、N2O、CO2等微量气体的地气交换对大气CO2浓度增加的响应.综合现有的资料表明,大气CO2浓度增加,会促进绿色植物生物量增加,同时改变生物质的C/N比,降低有机质的分解速率,增强了陆地生态系统对大气CO2的固持作用;大气CO2浓度增加会提高产甲烷菌的活性和影响CH4的排放过程,有可能导致湿地生态系统CH4的排放增加;大气CO2浓度增加对N2O排放影响的研究较少,且尚无一致的结论.另外,对于其他微量气体,尚没有相关研究报道.鉴于此,今后应加强大气CO2浓度增加的微量气体地气交换响应研究.  相似文献   

20.
植物水的稳定同位素分馏过程是水在土壤-植物-大气连续体中循环的重要环节。以往研究由于叶片水18O同位素比值(δ18O l,b)和氘(D)同位素比值(δDl,b)(合称δl,b)实测数量少只能作为模型验证数据, 导致δl,b富集机制研究多集中于模型研究, 缺乏基于野外试验条件的δl,b富集的控制机制研究。叶片水δDl,bδ18O l,b的富集程度(ΔDl,bΔ18O l,b, 合称Δl,b)通常表示为δl,b与茎秆水D同位素比值(δDx)和18O同位素比值(δ18Ox) (合称δx)之差, 即Δl,b = δl,b - δx。该研究以黑河中游沙漠绿洲春玉米(Zea mays)生态系统为研究对象, 重点采集和分析了季节和日尺度δl,bδx数据, 配套开展了大气水汽δ18O和δD (合称δv)等辅助变量的原位连续观测, 探讨了季节和日尺度上的δl,b富集特征及其影响因素。结果表明: 叶片水δl,bΔl,b的季节变化趋势不明显, 而受蒸腾作用影响表现出白天富集夜间贫化的单峰日变化特征。对于D来说, 无论季节尺度上还是日尺度上, 大气水汽δv和相对湿度是δDl,bΔDl,b的主要环境控制因素; 而对于18O来说, 无论季节尺度上还是日尺度上, 相对湿度是δ18O l,bΔ18O l,b的主要环境控制因素。由于D和18O在热力学平衡分馏上有约8倍差异, 直接分析叶片水ΔDl,bΔ18Ol,b与影响因素的差异性, 有助于理解叶片水δD和δ18O富集过程以及对模型发展有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号