首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《植物生态学报》2018,42(8):806
翅果能够依靠风力进行传播, 可能是被子植物快速散布和物种分化的一个重要因素。狭义的翅果是指果皮延伸成翅且不开裂的干果; 广义的翅果则包括果皮、花被片或苞片形成果翅的所有果实。根据果翅形态及其生长方式的不同, 广义的翅果可分为单侧翅果、周位翅果(圆翅果与蝶翅果)、棱翅果、披针翅果、翼状萼翅果、叶状苞翅果6种类型, 其空中运动方式有自旋式(单侧翅果、翼状萼翅果)、波浪式(周位翅果、叶状苞翅果)、翻滚自旋式(周位翅果)、直升机式(披针翅果、翼状萼翅果)和滚筒式(棱翅果)。棱翅果与圆翅果在被子植物基部类群樟目就有发生, 并同时出现在单子叶植物和双子叶植物中, 可能是最早出现的翅果类型。翅果的演化过程呈现出果翅数量增加、果翅偏向单侧和果翅负荷(果实质量与果翅面积之比)降低的趋势, 以利于适应较小的风并增加传播距离。果翅除了促进果实与种子的风力传播外, 还具有物理防御、调节种子萌发和促进二次传播等作用。泛热带分布的金虎尾科有着极其丰富的翅果类型, 与其多次跨洋长距离扩散密切相关, 可以作为研究翅果适应与演化的一个模式类群。结合生态和演化-发育生物学方法, 研究不同类型翅果在适应风力传播方面的差异、萼片或苞片发育成翅的分子与遗传机制、翅果不同类型的演化历史及其对被子植物物种多样性的影响等是今后值得探讨的重要问题。  相似文献   

2.
《植物生态学报》2018,42(2):185
为揭示北疆地区豆科植物种子对绵羊消化道作用的响应, 采集了北疆地区天然草地中常见的15种豆科植物种子。首先测定种子的长、宽、厚和质量, 并计算种子的形状指数。其次, 用种子饲喂绵羊, 收粪试验在种子摄食后的第6、12、24、36、48和72 h进行, 测定种子经绵羊消化道作用后的回收率、种子在绵羊消化道内的平均滞留时间以及消化道作用前后种子的萌发行为, 并研究了种子大小及形状指数对平均滞留时间和种子回收率的影响。结果如下: 15种植物种子质量在1.50-37.68 mg之间, 形状指数在0.001-0.12之间, 均为中等或较大类型的球(圆)形种子; 种子被绵羊采食后的排放动态符合高斯模型: Y = 0.02 + 0.74e -0.5(( X - 29.61)/9.41)2, 种子排放高峰期集中在采食后的24-36 h时间段内; 种子回收率最大的是洋甘草(Glycyrrhiza glabra)(39.25%), 最小的是草木犀(Melilotus officinalis)(4.28%); 平均滞留时间最长的是草木犀(37.19 h), 最短的是新疆棘豆(Oxytropis sinkiangensis)(22.33 h); 种子回收率与种子大小和形状指数之间分别具有符合形如Y = 6.45 + 2.05X - 0.04X 2Y = 2.59 + 36.97e -24.47 X的函数关系模型; 平均滞留时间与种子大小和形状指数之间分别具有符合形如Y = 12.48 + 37.44e -0.07 XY = 3.93 + 2055.33X - 21757.99X 2的函数关系模型, 此结果表明, 较大、较小和形状不规则的豆科种子较易被绵羊消化和排泄。经绵羊消化道作用后, 多叶锦鸡儿(Caragana pleiophylla)种子的萌发率由消化前的96.22%显著降低至35.17%, 野火球(Trifolium lupinaster)和狐尾黄耆(Astragalus alopecurus)种子萌发率和消化前相比差异不显著, 其余12种种子的萌发率均显著提高(p < 0.05)。  相似文献   

3.
BACKGROUND AND AIMS: The flora of the Sino-Japanese plant region of eastern Asia is distinctively rich compared with other floristic regions in the world. However, knowledge of its floristic evolution is fairly limited. The genus Ainsliaea is endemic to and distributed throughout the Sino-Japanese region. Its interspecific phylogenetic relationships have not been resolved. The aim is to provide insight into floristic evolution in eastern Asia on the basis of a molecular phylogenetic analysis of Ainsliaea species. METHODS: Cladistic analyses of the sequences of two nuclear (ITS, ETS) and one plastid (ndhF) regions were carried out individually and using the combined data from the three markers. KEY RESULTS: Phylogenetic analyses of three DNA regions confirmed that Ainsliaea is composed of three major clades that correspond to species distributions. Evolution of the three lineages was estimated to have occurred around 1.1 MYA during the early Pleistocene. CONCLUSIONS: The results suggest that Ainsliaea species evolved allopatrically and that the descendants were isolated in the eastern (between SE China and Japan, through Taiwan and the Ryukyu Islands) and western (Yunnan Province and its surrounding areas, including the Himalayas, the temperate region of Southeast Asia, and Sichuan Province) sides of the Sino-Japanese region. The results suggest that two distinct lineages of Ainsliaea have independently evolved in environmentally heterogeneous regions within the Sino-Japanese region. These regions have maintained rich and original floras due to their diverse climates and topographies.  相似文献   

4.
The re‐analysis of mtDNA sequence data on sea bass (Dicentrarchus labrax) in the north‐east Atlantic revealed the presence of a ‘slippage error’ in the alignment of the mitochondrial DNA (mtDNA) control region sequences. This induced an overestimation of the genetic variability within this species, and hence the inference of a striking multi‐clade partitioning of D. labrax populations within this area. After correction, the existence of highly distinct D. labrax haplogroups in Atlantic areas does not hold anymore, but the robust dichotomy between a single Mediterranean and a single Atlantic subgroup is confirmed. Here we present the new results related to the amended mtDNA control region alignment, and also summarize the key message in relation to the microsatellite data, which are unaffected by this revision. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 455–458.  相似文献   

5.
6.
选择我国亚热带区域76个地区(不包括行政单元)的植物区系调查和研究资料,采用主成分分析 (PCA)、TWINSPAN聚类和样带梯度分析方法,研究了我国亚热带区域植物区系地理成分的构成特征和 各成分之间的关系;各研究区域间植物区系地理成分构成的相关性和空间分异特征;并分析了贯穿我国亚热带区域的东经108.5°~111.5°和北纬29°~31°两条样带的几种区系地理成分的分布梯度。结果表明:①15种区系地理成分可以归为热带成分、温带成分、干旱区成分和东亚中心成分4组;我国亚热带各地区区系地理成分中泛热带和北温带分布的比例最高;干旱区分布诸类比例极小;东亚中心成分的比例突出,特有性强;②样点的PCA排序明显反映了北、中、南亚热带在区系地理成分构成上的差异,但亚热带东西部的差异不明显;③样带分析清晰地反映了热带、温带成分之比的梯度格局;川东鄂西地区特有分布中心的地位和世界分布与特有成分相反的分布格局。  相似文献   

7.
Using the methods of PCA and TWINSPAN, floristic data of seventy-six mountain floras in the Chinese subtropical region were quantitatively analyzed to reveal the compositional characteristics of its floristic elements, the relationships of its different floristics elements, and the correlation as well as the spatial differentiation of its floristic element composition. Moreover, a north-south transect between 108.5°∽111.5° E and an east-west transect between 29°∽31° N were set up to analyze the spatial gradients of several floristic elements. The results are summarized as follows: ① In the subtropical region, the 15 areal-types of genera of seed plants of China fall into 4 groups: tropical, temperate, arid and eastern Asian, with the pantropic elements and the northern temperate elements being of the highest percentage, the eastern Asian elements being of a very high percentage, and the endemism being of a very high degree, while the arid elements being of a very low percentage. ② As shown by the result of PCA, the northern, middle and southern parts of the Chinese subtropical region are well differentiated in terms of their floristic composition, but the eastern and the western parts are not clearly differentiated. ③ The transect analysis has clearly shown the gradient pattern of the ratio of tropical vs. temperate elements, the status of the region from eastern Sichuan to Western Hubei as a distribution center of the Chinese endemic genera, and the contrary distribution pattern of the cosmopolitan elements and the Chinese endemic elements in the Chinesesubtropical region.  相似文献   

8.
甘肃省忍冬属植物区系地理的定理研究   总被引:2,自引:0,他引:2  
根据系统分类和地理分布资料,采用模糊聚类方法,将甘肃省所产忍冬属41个类群划分为18个地理范畴各异的分布式样,分别归属于中国特有,东亚、中国-日本、中国-鼓马拉雅、热带亚洲,西亚喜马拉雅至东亚北部等6个分布型,其中,中国特有分布类群占73.2%。多数分布式样体现出西南至东北部的适应性辐射方向,少数呈现山西至西北方向。将甘肃省忍冬属植物分布区划分为3个区,11个小区,其中白龙江中上游山地,小陇山微成  相似文献   

9.
《植物生态学报》2017,41(7):779
Aims Our main purposes were to analyze the relationship between vegetation and pollen in the surface soil of the Turpan region, which is located in the southern slope of the eastern Tianshan Mountains, and to compare different pollen assemblages between the Turpan region and the northern slope of the Tianshan Mountains.Methods We collected 36 modern pollen samples and carried out modern vegetation survey in the Turpan region along an altitudinal gradient from 2 000 m to -154 m. Detrended correspondence analysis and Redundancy analysis were applied to analyze the distribution pattern of pollen in surface soils. Important findings We divided the pollen spectra into four pollen assemblage zones (mountain desert-steppe and desert, Gobi gravel, typical desert and salt mash vegetation), corresponding to the major vegetation types in the Turpan region. When compared with the northern slope, the characteristics of pollen assemblages in the mountain desert-steppe and desert were similar to those in the forest-steppe on the northern slope of the Tianshan Mountains; the pollen assemblages in the Gobi gravel and the typical desert seemed to be more consistent with those in the typical desert on the northern slope; however, no analogue was found in the salt mash vegetation. Obviously, the vertical pollen spectra in Turpan region were incomplete, lacking typical forest and Artemisia desert pollen zones. Besides, similar pollen zones in the Turpan region were found at an elevation of about 300 m higher than those in the northern slope. It is remarkable that the typical tree pollen, such as Picea and Pinus, showed their extra representation in the Turpan region. On one hand, the valley forest on the southern slope of the Tianshan mountains played an important role in pollen dispersal. On the other hand, with the cold air on the northern slope over the Tianshan Mountains, pollen may be carried and deposited in the Turpan region. The rivers feeding into Aiding Lake in the Turpan region may also contribute to the distribution of Picea and Pinuspollen. Lots of pollen studies have shown that the ratio of Artemisia to Chenopodiaceae (A/C) can be used as a good indicator of the degree of humidity in the semi-arid and arid areas. Our study revealed that A/C can roughly reflect the characteristics of the desert zone in the study area. The results of Redundancy Analysis ordination on pollen assemblages and environmental factors (mean annual temperature (MAT), mean annual precipitation (MAP) and altitude (ALT)) revealed that MAP was the main environmental factor affecting the pollen assemblages in the surface soil in the Turpan region and had more significant effects on the distribution of Nitraria pollen than on the distribution of Artemisia and Chenopodiaceae.  相似文献   

10.
《植物生态学报》2021,44(11):1095
菌根真菌共生是植物吸收养分的一个重要策略。外来植物可以干扰本地植物与菌根真菌的共生关系从而抑制本地植物生长, 这是近年来被发现的一种重要入侵机制, 在研究中得到日益广泛的关注。该文从以下几个方面着重综述这种入侵机制: 1)外来植物对本地植物菌根真菌的影响, 包括菌根真菌侵染率、菌根内部结构、根外菌丝的量、菌根真菌的群落组成、非菌根真菌的影响及网络结构; 2)外来植物对本地植物菌根真菌上述影响的机制, 包括资源竞争、化感作用和土壤肥力等生态机制以及相关的分子机制; 3)上述两个方面随入侵时间的变化格局。尽管干扰本地植物菌根真菌是一种重要的入侵机制, 但相对其他的入侵机制(例如天敌逃逸、新武器假说等)来说, 这类机制的研究目前仍很匮乏。鉴于此, 该文提出了未来需要重点关注的几个方面: 1)全球变化背景下, 入侵植物对本地植物菌根真菌的影响如何变化; 2)包括这种菌根机制在内的多种入侵机制之间的关系; 3)深入探究入侵的这种菌根机制在大的时空尺度上的变化规律。  相似文献   

11.
In this study we place seed size vs. seed number trade-offs in the context of plant dispersal ability. The objective was to suggest explanations for the evolution of different seed dispersal mechanisms, in particular fleshy fruits, wind dispersal and the maintenance of unassisted dispersal. We suggest that selection for improved dispersal may act either by increasing the intercept of a dispersal curve (log seed number vs. distance) or by flattening the slope of the curve. 'Improved dispersal' is defined as a marginal increase in the number of recruits sited at some (arbitrary) distance away from the parent plant. Increasing the intercept of the dispersal curve, i.e. producing more seeds, is associated with a reduction in seed size, which in turn affects the recruitment ability, provided that this ability is related to seed size. If recruitment is related to seed size there will be a recruitment cost of evolving increased seed production. On the other hand, a flattening of the slope by evolving dispersal attributes is likely to be associated with a fecundity cost. An exception is wind dispersal where smaller (and hence more numerous) seeds may lead to more efficient dispersal. We derive two main predictions: If recruitment is strongly related to seed size, selection for improved dispersal acts on the slope of the dispersal curve, i.e. by favouring evolution of dispersal attributes on seeds or fruits. If, on the other hand, recruitment is only weakly related to seed size (or not related, or negatively related), selection for improved dispersal favours increased seed production. Despite its simplicity, the model suggests explanations for (i) why so many plant species lack special seed dispersal attributes, (ii) differences in dispersal spectra among plant communities, and (iii) adaptive radiation in seed size and dispersal attributes during angiosperm evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
关于浙江南部森林植物华南,华东两个区系的划分问题   总被引:9,自引:0,他引:9  
选取分布于浙江南部的116个华南森林植物区系成份的工表种。根据自然地理条件的异同,在浙江南部的温州地区和丽水地区中选择5个代表性区域,分析其与华南区系的亲缘关系,在此基础上提出本区内华南,华东两个区系的划分意见,以乐清湾的清江为起点,向东越过乐清湾至温岭县南端(坞根),再经石头桥至交陈而出东海,向西南则沿北雁荡山东南山麓地带经永嘉县南端(上塘)至青田县东端(温溪),再越过瓯江向东南拐弯至瓯海(瞿溪  相似文献   

14.
15.
《植物生态学报》2017,41(11):1208
Methane (CH4) is an important greenhouse gas, and is involved in atmospheric chemical reactions. Aquatic and hydric environments are important sources of atmospheric CH4. Majority of CH4 are transported and released to atmosphere by emerged herbaceous plants and hygrophytes in aquatic and hydric environments. In recent decades, there has been increasing attention on how plants transport CH4. During CH4 transportation processes, several interfaces of CH4 exchange play important roles. First, the tips of lateral roots are primary locations (hotspots) for CH4 entering the root systems and regulate the gross CH4 transportation. Then, the diaphragms in the aerenchyma and the root collar impose great resistances for the overall CH4 transportation processes. In early studies, it was controversial that whether CH4 emission from plants to atmosphere was controlled by stomas or micropores (small cracks and holes in aboveground part of plant except the blade). Recent studies have confirmed the dominant role of micropores for CH4 transportation and emission. The dead and damaged stems are widely considered to have positive effects on CH4 transportation. Diffusion and convection are the two main transporting mechanisms of CH4, with the efficiency of convection being generally higher than that of diffusion. Both biological (e.g. biomass and photosynthesis) and environmental (e.g. light, temperature and humidity) factors regulate the CH4 transportation. Many studies have contributed to understanding the CH4 transportation processes and mechanisms by emerged herbaceous plants and hygrophytes. However, there are still some questions needing further investigations. Issues of consideration may include the operational efficiency in the critical interfaces of CH4 exchange, the plant parts that play a decisive role in the entire CH4 transportation, the underlying roles of diffusion and convection on CH4 interfaces exchanges and entire long distance transports, the combined and coupling effects and mechanisms of biotic and abiotic factors, and the similarities and differences of CH4 transporting processes and mechanisms among plant species.  相似文献   

16.
New somatic chromosome numbers for nine species eight families and eight gen era in the Sino-Japanese Region are reported here as shown in Table 1. Data of six genera are previously unknown cytologically. The bearings of these new data on the systematics and evolution of the related species, genera or families are discussed as follows: (1) Platycarya strobilacea Sieb. et Zucc. (Juglandaceae). The chromosome number of this species is 2n=24, with a basic number of x=12, which deviates from 2n=32 occurred in Juglans, Carya, Pterocarya and Engelhardtia with the basic number x= 16. The Juglandaceae appears to be fundamentally paleotetraploid, with an original basic number of x = 6 in Platycarya and x-8 in the other four genera, although secondary polyploidy occurs in Carya. Based on the remarkable morphological differences between Platycarya and the rest seven genera of the family, Manning (1978) established two subfamilies: Platycaryoideae for Platycarya and Juglandoideae for the other genera. Iljinskaya (1990), however, recently established a new subfamily: Engelhardioideae for Engelhardtia. Lu (1982) points out that because of a great number of primitive characters occurring in Platycarya, the genus could not be derived from any other extant juglandaceous taxa but probably originated with the other groups from a common extinct ancestor. The present cytological data gives support to Manning′s treatment. We are also in favor of Lu′s supposition and suggest that basic aneuploid changes, both ascending and descending, from a common ancestor with the original basic number x=7, took place during the course of early evolution of the Juglandaceae and led to the origin of taxa with x=6 and 8. Subsequent polyploidy based on these diploids occurred and brought forth polyploids of relic nature today, whereas their diploid progenitors apparently have become extinct. (2) Nanocnide pilosa Migo (Urticaceae). The chromosome number of this Chinese endemic is 2n-24, with a basic number of x=12. An aneuploid series occurs in the Urticaceae, with x--13, 12, I1, 10, 9, 8, 7, etc. According to Ehrendorfer (1976), x = 14, itself being of tetraploid origin, is the original basic number of the whole Urticales, and descending aneuploid changes took place in the early stage of evolution of the Urticaceae and Cannabinaceae. In addition to Nanocnide, x= 12 also occurs in Australina, Hesperonide and Lecanthus, and partly in Chamabainia, Elatostema, Girardinia, Pouzolzia and Urtica. (3--4) Sedum sarmentosum Bunge and S. angustifolium Z. B. Hu et X. L. Huang (Crassulaceae). The former is a member of the Sino-Japanese Region, while the latter is only confined to eastern China. The chromosome number of Sedum is remarkably complex with n=4-12, 14-16…74, etc. S. angustifolium with 2n=72 of the present report is evidently a polyploid with a basic number of x =18 (9?) Previous and present counts of S. sarmentosum show infraspecific aneupolyploidy: n = c. 36 (Uhl at al. 1972) and 2n=58 (the present report). These two species are sympatric in eastern China and are morphologically very similar, yet distinguishable from each other (Hsu et al. 1983) S. sarmentosum escaped from cultivation in the United States gardens exhibited high irregularity in meiosis (Uhl et al. 1972). Uhl (pets. comm. ) suspected strongly that it is a highly sterile hybrid. R. T. Clausen (pets. comm.) found that plants of S. sarmentosum naturalized in the American Gardens propagated by means of their long stolons and broken stem tips, and could not yield viable seeds. Hsu et al. (1983) found that some of the plants of S. sarmentosum and S. angustifolium did yield a few seeds, but other did not. These species are, therefore, by the large vegetatively apomictic. (5) Glochidion puberum (L. ) Hutch. (Euphorbiaceae). The genus Glochidion includes about 300 species, but only eigth species from the Himalayas have been studied cytologically, with n= 36 and 2n= 52, having a basic number of x= 13. The present count for the Chinese endemic G. puberum establishes the tetraploid chromosome number 2n= 64, and adds a new basic number x= 16 to the genus. (6) Orixa japonica Thunb. (Rutaceae). Orixa is a disjunct Sino-Japanese monotypic genus. Out of the 158 genera of the Rutaceae, chromosome numbers of 65 genera have hitherto been investigated, of which 42 genera are with x=9 (66.61%), some with x=7, 8 and 10, and rarely with x=13, 15, 17 and 19. The present count of 2n=34 for O. japonica may have resulted from a dibasic tetraploidy of n=8+9. (7) Rhamnella franguloides (Maxim.) Weberb. (Rhamnaceae). The chromosome number of this member of the Sino-Japanese Region is 2n= 24. with a basic number of x= 12. The basic number x= 12 also occurs in Hovenia, Paliurus, Sageretia, Ceanothus and Berchemia. Hong (1990) suggested that x= 12 in Rhamnaceae may be derived from descending aneuploidy of a paleotetraploid ancestor. (8) Sinojackia xylocarpa Hu (Styracaceae). The chromosome number of this rare Chinese endemic is 2n= 24, with a basic number of x =12, which is identical with that in Halesia and Pterostyrax, but deviates from that in Styrax (x=8). The basic number x=8 in the Styracaceae may be derived from the original basic number x=7 by ascending aneuploidy in the early stage of evolution of the family, and x=12 may be derived from polyploidy. (9) Thyrocarpus glochidiatus Maxim. (Boraginaceae). The chromosome number of this Chinese endemic species is 2n=24, with a basic number of x=12. An extensive aneuploid sequence of x = 4-12 occurs in the Boraginaceae, of which x = 8, 7 and 6 are the most common. The basic number x=12 also occurs in Cynoglossum and Mertensia. It is evident that aneuploid changes, both descending and ascending, from an ancestor with x = 7, have taken place in the primary phase of evolutionary diversification of the Boraginaceae, and subsequent polyploidy has given rise to x=15, 17 and 19 in a few genera (e. g. Amsinskia and Heliotropium). The origin of x=12 is not certain. Either it be a result of ascending aneuploidy, or a product of polyploidy on the basis of x = 6. The present authors are in favorof the latter.  相似文献   

17.
氮沉降对森林生态系统磷循环产生了不可忽视的影响, 尤其是加剧了植物生长的磷限制, 从而使得氮沉降背景下植物磷含量变化备受关注。该文综述了氮添加对森林植物磷含量的影响, 认为氮添加通过促进土壤磷酸酶活性进而提高土壤有效磷含量, 有利于植物的磷吸收并增加植物磷含量。同时, 森林植物磷含量对氮添加的响应还受物种、生活型以及施氮时间长短等因素的影响。基于森林植物磷含量对氮添加响应的差异性, 该文进一步探讨氮富集背景下森林植物磷含量变化的可能机制: 1)外源氮输入通过改变土壤中有效磷含量从而对植物磷的来源产生影响; 2)通过影响植物的根系分泌物、菌根共生和根系形态结构等进而影响植物的磷吸收能力; 3)通过影响植物的磷养分再分配、磷养分重吸收对植物磷利用效率产生影响。综上所述, 外源氮输入使植物磷含量发生改变, 首要原因是土壤有效磷含量的改变, 其次是植物磷吸收能力和磷利用效率的改变起调控作用。  相似文献   

18.
安徽齐云山区种子植物区系的研究   总被引:3,自引:0,他引:3  
据初步统计,安徽省休宁县齐云山山区共有种子植物125科,511属,867种。与邻近山地相比,种子植物的丰富程度次于黄山(134科、537属、1058种)、清凉峰(142科、547属、1083种)和牯牛降(151科、582属、1117种)。该区种子植物区系起源古老,地理成分复杂,各类热带、温带成分和中国特有成分分别占该区种子植物属总数的42.0%、54.3%和3.7%,显示该植物区系具有明显的中亚热带特性。该区系与黄山、清凉峰、牯牛降、六股尖区系的关系密切,而与天堂寨区系关系较远。  相似文献   

19.
翅果能够依靠风力进行传播, 可能是被子植物快速散布和物种分化的一个重要因素。狭义的翅果是指果皮延伸成翅且不开裂的干果; 广义的翅果则包括果皮、花被片或苞片形成果翅的所有果实。根据果翅形态及其生长方式的不同, 广义的翅果可分为单侧翅果、周位翅果(圆翅果与蝶翅果)、棱翅果、披针翅果、翼状萼翅果、叶状苞翅果6种类型, 其空中运动方式有自旋式(单侧翅果、翼状萼翅果)、波浪式(周位翅果、叶状苞翅果)、翻滚自旋式(周位翅果)、直升机式(披针翅果、翼状萼翅果)和滚筒式(棱翅果)。棱翅果与圆翅果在被子植物基部类群樟目就有发生, 并同时出现在单子叶植物和双子叶植物中, 可能是最早出现的翅果类型。翅果的演化过程呈现出果翅数量增加、果翅偏向单侧和果翅负荷(果实质量与果翅面积之比)降低的趋势, 以利于适应较小的风并增加传播距离。果翅除了促进果实与种子的风力传播外, 还具有物理防御、调节种子萌发和促进二次传播等作用。泛热带分布的金虎尾科有着极其丰富的翅果类型, 与其多次跨洋长距离扩散密切相关, 可以作为研究翅果适应与演化的一个模式类群。结合生态和演化-发育生物学方法, 研究不同类型翅果在适应风力传播方面的差异、萼片或苞片发育成翅的分子与遗传机制、翅果不同类型的演化历史及其对被子植物物种多样性的影响等是今后值得探讨的重要问题。  相似文献   

20.
青藏高原及周边高山地区孕育了极为丰富的植物多样性资源, 研究该地区植物如何顺利完成繁殖过程有助于我们理解植物对典型高山环境的进化和适应机制。该文综述了青藏高原地区高山植物在资源分配、繁殖方式、花部特征演化等方面的研究进展, 包括全球气候变化对植物繁殖特征的影响, 以及一些新技术和新方法在本研究领域的应用。在高山地区限制性环境中, 随海拔升高, 繁殖分配通常表现出增大的趋势, 其中投入到雄性资源的比例上升, 但具体的资源分配模式还要取决于植株的交配系统、个体大小、生活史特征、遗传特性以及环境中的资源有效性等。面对资源和传粉的双重限制, 植物在不同繁殖方式之间存在权衡, 当传粉者稀少时, 克隆繁殖和自交有利于繁殖保障; 而有性繁殖和异交能够提高种子的质量和后代的遗传多样性, 从而在复杂多变的气候条件下有利于种群的维持。因此, 不同繁殖方式的结合以及泛化的传粉互作网络可能是应对高山限制性环境的最优选择。花部特征的演化主要受到当地传粉者的选择压力, 但是外来传粉者、植食者、盗蜜者以及非生物环境(如温度、雨水和紫外辐射等)对花部性状的影响越来越受到重视。近年来, 青藏高原因其脆弱性和对气候变化的高度敏感性而在全球气候变化研究中备受关注, 以全球变暖和氮沉降增加为显著特征的全球气候变化正在直接或间接地影响着该地区高山植物的繁殖特征。气候变化影响植物和传粉者的物候并引起物种的迁移, 最终将导致植物与传粉者的时空不匹配。植物通过改变花部特征(花展示、花冠结构、花报酬的数量和质量)来响应气候变化, 这可能会改变其传粉者的类型、数量和访花行为, 从而最终影响植物的繁殖成功。3D打印和高通量测序等新技术和新方法的应用有助于促进植物繁殖生态学研究的进一步发展。3D打印的花能够精确控制其形态构造, 可以用于研究精细的花部特征变化对于传粉者行为的影响, 在此基础上与人工饲养的传粉者结合使用, 有助于进一步研究传粉者介导的花部特征演化。随着高通量测序技术的发展, 植物繁殖生态学领域, 尤其是花部特征演化的许多重要问题的潜在机制得以深入研究。该文最后提出了目前研究中需要注意的问题以及值得深入研究的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号