首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Viola philippica is a species with a typical chasmogamous-cleistogamous (CH-CL) mixed breeding system. It provides a flower model system to investigate floral organs development under different photoperiods. Morphological changes of intermediate cleistogamous (inCL) flowers have been observed, the trends in variation of changes from CH flowers to CL flowers or from CL flowers to CH flowers have been analyzed, the localized effects of poorly developed stamens and petals in CL and inCL flowers have been identified. This research provided morphology and structural changes with implication for the evolutionary significance of the dimorphic flower formation for further study in dimorphic flower development. Methods: We used methods of anatomy and structural analysis to observe the morphological structures of flowers under different photoperiods. Important findings: Photoperiod played an important role in the development of CH and CL flowers in V. philippica. Under short-day light and intermediate-day light, both CH and inCL flowers developed simultaneously. Most of the floral buds were CH flowers under a photoperiod of short-day light, but most of the floral buds were inCL flowers under mid-day light. Complete CL flowers formed under long-day lights. However, there were a series of transitional types in the number and morphology of stamens and petals among inCL flowers, including five stamens with three petals related to CH flowers and two stamens with one petal related to CL flowers. The former type was dominant under short-day light conditions, and the latter type was dominant under mid-day light. Further more, there were localized effects in stamen and petal development for CL and inCL flowers. The development of ventral lower petal (corresponding to the lower petal with spur of CH flower) and the adjacent two stamens in inCL flowers were best, and the back petal was similar to that of CL flowers, an organ primordium structure. The adjacent stamens with the back petals tended to be poorly developed. In extreme cases, these stamens in inCL flowers had no pollen sac, only a membranous appendage or even a primordium structure. When the plants with CL or CH flowers were placed under short-day light or long-day light, the newly induced flowers all showed a series of inCL flower types, finally the CL flowers transformed into CH flowers, and the CH flowers transformed into CL flowers. This result indicates the gradual effects of different photoperiods on dimorphic flowers development of V. philippica. A long photoperiod could inhibit the development of partial stamens and petals, and a short photoperiod could prevent the suppression of long-day light and promote the development of stamens and petals.  相似文献   

2.
In Viola odorata, chasmogamous (CH) or open flowers and small, short-petioled leaves are produced under 11 hr or less of daylight, cleistogamous (CL) or closed flowers and large, long-petioled leaves under 14 hr or more of daylight, and intermediate floral and leaf forms under transitional photoperiods. CL flowers are approximately four times smaller than CH flowers and differ morphologically in repressed growth of the anterior petal spur and staminal nectaries, and recurving of the style which remains enclosed within the cone formed by anther appendages. Both CH and CL shoot systems conform to a (2 + 3) phyllotaxis with minor differences in leaf divergence angles and phyllotactic indices. The larger CL leaf grows significantly faster than the CH leaf, and an increased rate of leaf initiation occurs in the CL apex represented by a plastochron of 3.4 days compared to 4.3 days in the CH apex. The plastochron index was used to indirectly age young floral primordia nondestructively until prophase of meiosis I within the anthers. This event occurs 8 days earlier in the CL than the CH flower. Time from meiosis until flower maturity, determined by direct observation, is about 14 days for the CL flower, versus 21 days for the CH flower.  相似文献   

3.
以‘窄叶藤本月季花’( Rosa chinensis ‘Zhaiye Tengben Yuejihua’)ב月月粉’( R. chinensis ‘Old Blush’)杂交群体为材料, 分析其花瓣数量的分离特点, 对单瓣花与重瓣花的花芽分化过程进行观察, 并对花瓣、雄蕊及瓣化雄蕊进行表皮细胞超微结构的观察.结果显示...  相似文献   

4.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

5.
Tooke F  Battey NH 《The Plant cell》2000,12(10):1837-1848
The completion of flower development in Impatiens balsamina requires continuous inductive (short-day) conditions. We have previously shown that a leaf-derived signal has a role in floral maintenance. The research described here analyzes the role of the leaf in flower development. Leaf removal treatments, in which plants were restricted to a specified number of leaves, resulted in flowers with increased petal number, up to double that of the undefoliated control. Similar petal number increases (as well as changes in bract number or morphology) were recorded when plants began their inductive treatment at a late developmental age or when plants of a nonreverting line (capable of floral maintenance in the absence of continuous short days) were transferred from short days to long days. Our data imply that the increased petal number was neither a response to stress effects associated with leaf removal nor a result of alterations in primordium initiation rates or substitutions of petals for stamens. Rather, the petal initiation phase was prolonged when the amounts of a leaf-derived signal were limiting. We conclude that a leaf-derived signal has a continuous and quantitative role in flower development and propose a temporal model for the action of organ identity genes in Impatiens. This work adds a new dimension to the prevailing ABC model of flower development and may provide an explanation for the wide variety and instabilities of floral form seen among certain species in nature.  相似文献   

6.
Summary The flowering behavior of 59 Pisum mutants and 228 recombinants was studied in the phytotron in four different photoperiods (continuous light, long-day 18/6 h, short-day 12/12 h, extreme short-day 6/18 h). There was no or little difference in the response of the genotypes to long-day and permanent light, whereas great differences were observed between long- and short-day 12/12 h and between the two short-day trials. About half the genotypes tested were unable to survive or to flower in extreme short-day. Some recombinants, however, had an almost normal development under these unfavorable conditions. Gene fis controls the photoperiodic reaction of the plants: they are unable to flower in short-day. Gene fds negatively influences gene efr for earliness: it causes a strong delay of flowering of efr recombinants in long-day and suppresses the formation of functionable flowers in short-day. Most of the genotypes tested showed a specific reaction to the four photoperiods different from that of the mother variety and the other genotypes. The practical aim of our phytotron experiments is the preselection of Pisum genotypes which might be suited for cultivation in countries with short-day climate.This paper is dedicated to Professor Karl-Ernst Wohlfarth-Bottermann on his 65th birthday  相似文献   

7.
Cleistogamy—the production of open (chasmogamous—CH) and closed (cleistogamous—CL) floral forms by a species—is widespread among the angiosperms. While the CL flower is autogamous, the CH flower may provide a means for outcrossing. The term “cleistogamy” has also been used to describe other phenomena. A classification of types of cleistogamy is proposed. In this review, a restricted definition of cleistogamy is used to refer to species which show real floral dimorphisms, with divergent developmental pathways leading to CL and CH as well as intermediate floral forms. Reductions in the androecium and corolla are the most common feature of the CL flowers. The structural, developmental, and functional aspects of cleistogamy are reviewed. Evidence is presented to show that the CL flowers have modifications in their development which ensure self pollination. A proposal is made for using this phenomenon of dimorphic flower production as a system for the study of floral morphogenesis, function and evolution.  相似文献   

8.
魏景  彭冶  杨立梅 《西北植物学报》2021,41(12):2072-2079
为探究垂丝海棠重瓣花成花原因,该研究以单瓣垂丝海棠和重瓣垂丝海棠为实验材料,应用体式显微镜和扫描电镜观察垂丝海棠单瓣、重瓣品种花器官分化过程;解剖观察重瓣垂丝海棠大蕾期的花与盛开的花,统计其花器官的形态与数目;应用R语言对重瓣垂丝海棠的花瓣数目与其余各轮花器官数目进行相关性分析。结果显示:(1)单瓣和重瓣垂丝海棠的花器官分化均分为萼片原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期,且各轮花器官按照向心顺序依次分化发育。(2)在花瓣原基分化期,单瓣垂丝海棠仅分化出一轮(5枚)均匀分布于两枚萼片交汇处的花瓣原基,而重瓣垂丝海棠分化出两轮分布散列的花瓣原基,第一轮为5~7枚,第二轮为7~10枚。(3)在重瓣垂丝海棠各轮花器官中存在较多萼片瓣化、雄蕊瓣化、雌雄蕊异常发育的情况。(4)重瓣垂丝海棠各轮花器官数目间相关性分析结果显示,其花瓣数目与雄蕊数目以及瓣化中的雄蕊数目间存在明显的正相关关系,该现象与常规雄蕊瓣化植物表现的雄蕊数目减少、花瓣数目增多的现象不同。研究表明,重瓣垂丝海棠花瓣数目的增多并不完全依赖于雄蕊变瓣,暗示垂丝海棠重瓣花成花原因的多元性与复杂性。  相似文献   

9.
Monocots are remarkably homogeneous in sharing a common trimerous pentacyclic floral Bauplan. A major factor affecting monocot evolution is the unique origin of the clade from basal angiosperms. The origin of the floral Bauplan of monocots remains controversial, as no immediate sister groups with similar structure can be identified among basal angiosperms, and there are several possibilities for an ancestral floral structure, including more complex flowers with higher stamen and carpel numbers, or strongly reduced flowers. Additionally, a stable Bauplan is only established beyond the divergence of Alismatales. Here, we observed the floral development of five members of the three ‘petaloid’ Alismatales families Butomaceae, Hydrocharitaceae, and Alismataceae. Outer stamen pairs can be recognized in mature flowers of Alismataceae and Butomaceae. Paired stamens always arise independently, and are either shifted opposite the sepals or close to the petals. The position of stamen pairs is related to the early development of the petals. In Butomaceae, the perianth is not differentiated and the development of the inner tepals is not delayed; the larger inner tepals (petals) only permit the initiation of stamens in antesepalous pairs. Alismataceae has delayed petals and the stamens are shifted close to the petals, leading to an association of stamen pairs with petals in so-called stamen–petal complexes. In the studied Hydrocharitaceae species, which have the monocot floral Bauplan, paired stamens are replaced by larger single stamens and the petals are not delayed. These results indicate that the origin of the floral Bauplan, at least in petaloid Alismatales, is closely linked to the position of stamen pairs and the rate of petal development. Although the petaloid Alismatales are not immediately at the base of monocot divergence, the floral evolution inferred from the results should be a key to elucidate the origin of the floral Bauplan of monocots.  相似文献   

10.
罗敏蓉 《广西植物》2020,40(11):1645-1652
花的发生和发育过程研究可以发现早期进化的轨迹,为系统发育的研究提供重要线索。蓝堇草属(Leptopyrum)为毛茛科唐松草亚科一单种属,仅包含蓝堇草一种,其花的发生和发育过程仍为空白。为了深入理解唐松草亚科乃至毛茛科花发育多样性和演化规律,该文运用扫描电子显微镜(SEM)观察了蓝堇草各轮花器官的形态发生和发育过程。结果表明:该属植物所有的萼片、花瓣、雄蕊和雌蕊均为螺旋状发生,花器官排列式样也为螺旋状; 5枚萼片原基宽阔,5枚花瓣原基圆球形、位于萼片原基的间隔,且在后期表现为延迟发育现象,雄蕊原基较小、为圆球形; 花瓣原基和雄蕊原基连续发生,无明显的时空间隔,但与萼片原基有时空间隔; 心皮原基为马蹄形对折,柱头组织由单细胞乳突组成; 胚珠倒生、具单珠被。该属花器官螺旋状排列、胚珠具单珠被在唐松草亚科中是独有的性状,花发育形态学证据支持了该属的特殊性。  相似文献   

11.
Racial differences based on flowering response to several photoperiods were detectable in two widely separated populations of white snakeroot, Eupatorium rugosum Houtt. The most favorable photoperiod for advanced flowering in Georgia stocks was 12 hr, for those from North Dakota, 14 hr. The difference in latitude between these populations was approximately 12° and represents a mean difference of 75 days in the frost-free season. Under noninductive photoperiod a 1-hr interruption of white light in the middle of 15 hr of darkness stimulated floral initiation in North Dakota plants, whereas the same application at the beginning or at the end of the dark period failed to produce flower buds. The effect of red light (660 mμ) for 10 min given in the middle of the long night was similar to white light on the northern strain, and was negated by far-red (730 mμ). Georgia stocks initiated flowering under 15 hr of darkness but were retarded by white light applied in the middle of the period, thus differing in basic response from North Dakota plants. Red light, in contrast to effects observed in North Dakota plants, retarded initiation of flower buds. This effect was offset by far-red light. When compared with other studies on long-day and short-day species our results suggest that photoperiodic adaptations related to latitudinal distribution occur in white snakeroot. The North Dakota strain showed correspondence to long-day types while short-day tendencies were exhibited by Georgia plants.  相似文献   

12.
This paper describes the detailed characteristics of the circannual pupation rhythm in Anthrenus verbasci determined by laboratory experiments under various photoperiods and temperatures. The frequency distribution of larval duration showed a periodic pattern over 2-3 years and the period was 37-40 weeks under a constant short-day photoperiod (light:dark 12:12) at 20 degrees C. This rhythm showed temperature compensation to some extent under a short-day photoperiod between 17.5 degrees C and 27.5 degrees C. Under alternations of a long-day (light:dark 16:8) and a short-day photoperiod, pupation occurred 21-24.5 weeks after transfer from a long-day to a short-day photoperiod. Therefore, we concluded that the timing of pupation in A. verbasci is controlled by a circannual rhythm and its zeitgeber is a change in photoperiod. Furthermore, when larvae were transferred from a long-day to a short-day photoperiod at various ages, the larval duration after the photoperiodic transfer depended on the time of the transfer. This difference can be explained by phase-dependent phase shifts in the circannual rhythm.  相似文献   

13.
Viola (Violaceae) is one of the largest genera in angiosperms. This genus is essentially classified into stemless and stemmed groups based on growth morphology. However, Viola mirabilis var. subglabra is an exception in having intermediate flowering characteristics; cleistogamous (CL) flowers are formed in the axils of stem leaves, whereas chasmogamous (CH) flowers arise from basal rosettes (radical CH (CH(r)) flowers) and also in the axils of the stem (axially CH (CH(a)) flowers). To understand why the pattern of flower production varies in this Viola species, flower production was investigated in 10 Japanese populations from Hokkaido to the western part of Honshu in 2014 and 2015. Furthermore, flower characteristics were also compared between CH(r) and CH(a) flowers in Hokkaido. In this species, the production of CH flowers varied among individuals, and they were categorized into three groups, individuals that produced (i) only CH(r) flowers, (ii) only CH(a) flowers and (iii) both CH flowers. The frequency of these groups differed among populations, but some individuals changed the category between 2014 and 2015. Thus, the production of CH(r) and CH(a) flowers plastically changes depending on individual conditions and/or environmental factors. On the other hand, CH(r) and CH(a) flowers differed in flower size and flowering phenology. These results suggest that two types of CH flowers may play different roles in reproduction in each population, but fruit sets and seed sets did not differ between two types of CH flowers.  相似文献   

14.
Floral scent was collected by headspace methods from intact flowers, petals, and stamens of four species ofPyrolaceae. The scent samples were analyzed by coupled gas chromatography-mass spectrometry (GC-MS). The floral scent inPyrola spp. is differentiated into a characteristic petal scent—phenyl propanoids and a characteristic stamen scent—methoxy benzenes. InMoneses the scent is characterized by isoprenoids and benzenoids, with a larger proportion of benzenoids in the stamens compared to the petals. Specific anther scents may promote foraging efficiency in buzz-pollinated species and enhance flower fidelity. Variation in floral scent composition is consistent with the taxonomic relationships among the genera and species examined.  相似文献   

15.
16.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

17.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

18.
Floral ontogeny of taxa of two subtribes (Labicheinae, Dialiinae) of caesalpinioid tribe Cassieae, characterized by reduced number of floral organs, was compared. All three taxa studied are distichous; Petalostylis labicheoides flowers are solitary in leaf axils, Labichea lanceolata has few-flowered racemes, and Dialium guineense has numerous-flowered cymes. The first sepal primordium in each is initiated abaxially and nonmedianly. Order of organogenesis in Petalostylis is: five sepals bidirectionally, five petals and carpel simultaneously, then five stamens bidirectionally, starting abaxially. The order in Labichea is: five sepals helically (one lagging in time), five petals unidirectionally starting abaxially, the carpel and petals concurrently, then two stamens successively, starting laterally. Order in Dialium is: five sepals bidirectionally, the single petal adaxially, and lastly the carpel and two stamens concurrently. Specializations include (1) reduction of the five sepals to four by fusion in Petalostylis and Labichea; (2) reduction of petal number to one in Dialium; (3) reduction of stamen number to two in Labichea and Dialium, and reduction of functional stamens to three in Petalostylis; and (4) an elaborate, late-developing style in Petalostylis. Floral asymmetry, another specialization, characterizes Labichea, expressed by dissimilar stamens, while the other genera have zygomorphic flowers. Floral ontogenies are compared with other taxa of Cassieae.  相似文献   

19.
Inflorescence and floral development of two tropical legume trees, Dahlstedtia pinnata and Dahlstedtia pentaphylla, occurring in the Atlantic Forest of south-eastern and southern Brazil, were investigated and compared with other papilionoids. Few studies have been made of floral development in tribe Millettieae, and this paper is intended to fill that gap in our knowledge. Dahlstedtia species have an unusual inflorescence type among legumes, the pseudoraceme, which comprises axillary units of three or more flowers, each with a subtending bract. Each flower exhibits a pair of opposite bracteoles. The order of flower initiation is acropetal; inception of the floral organs is as follows: sepals (5), petals (5), carpel (1) plus outer stamens (5) and finally inner stamens (5). Organ initiation in sepal, petal and inner stamen whorls is unidirectional; the carpel cleft is adaxial. The vexillum originates from a tubular-shaped primordium in mid-development and is larger than other petals at maturity, covering the keels. The filament tube develops later after initiation of inner-stamen primordia. Floral development in Dahlstedtia is almost always similar to other papilionoids, especially species of Phaseoleae and Sophoreae. But one important difference is the precocious ovule initiation (open carpel with ovules) in Dahlstedtia, the third citation of this phenomenon for papilionoids. No suppression, organ loss or anomalies occur in the order of primordia initiation or structure. Infra-generic differences in the first stages of ontogeny are rare; however, different species of Dahlstedtia are distinguished by the differing distribution pattern of secretory cavities in the flower.  相似文献   

20.
The effect of photoperiod on diapause induction, developmental time and body size was examined in Melanoplus sanguinipes, the lesser migratory grasshopper. Contrary to what is found in most insects, facultative diapause-egg production is found to be controlled by changing rather than constant photoperiods. In addition, developmental time is shown to be faster under short-day photoperiods than long-day photoperiods. And finally, body size is larger under long-day photoperiods and smaller under short-day photoperiods. Implications of these results for the regulation of the seasonal life cycle of M. sanguinipes in the field are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号