首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the many contributions of I.P. Pavlov to the study of the higher nervous system was his exploration of the physical basis of attention. Pavlov's analysis of the orienting reflex (OR), together with the contributions of Y.N. Sokolov, demonstrated that attention could be studies by the objective methods of neurophysiology. Cognitive neuroscience has continued these effort by using neuroimaging to explore the anatomy and physiology of attention in the working human brain. It is now possible to show that the appearance of a novel visual event invokes multiple attentional networks that work in concert to orient to and process a novel object within a very brief exposure. In this paper, we describe cognitive studies of orienting to novelty in adults, examine the networks of neural areas involved in processing novel objects, and review the development in early life of these attentional networks. Orienting to novelty provides an excellent vehicle for examining how biology and experience shape the mechanisms of self-regulation and cognitive control.  相似文献   

2.
Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4's role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection.  相似文献   

3.
The profusion of progress during the past twenty years in identifying neural correlates of selective attention within the visual system has left open the question of how visual representations are biased to favor target stimuli. Studies aimed at specifying the mechanisms that can be causally implicated in the control of visual selective attention have only recently begun in earnest. Employing both the psychophysical and the neuroanatomical data, recent neurophysiological experiments in monkeys and neuroimaging studies in humans are converging on the neural circuits that provide the source of at least some forms of attentional control signals.  相似文献   

4.
The mechanisms of selective verbal attention were studied under conditions of simultaneous delivery of speech signals via the visual and auditory channels. The investigation was based on the comparison and synthesis of data obtained by two methods: positron emission tomography (PET) and brain evoked potentials (EPs). A new approach was developed: complementary tasks were constructed in such a way that, despite principal methodological problems, the same phenomenon could be investigated in one paradigm in EP and PET studies. The results obtained by the two methods are in rather good agreement with respect to topography: the secondary and tertiary areas, as well as the associative brain areas, are involved in attention concentration, that is, selection of verbal information occurs at the level of cognitive processes. The combination of two complementary methods, PET and EP, allowed the processes of processing of sensory information and brain mechanisms of selective attention to be investigated much more completely. The PET studies contributed to further understanding of brain mechanisms evidencing where processing occurs and the EP method provided insight into the mechanism of how this information is processed inside the corresponding cortical areas. The finding that the activation of primary areas of the visual cortex is accompanied by the inhibition of visual information deserves attention. This conclusion can be considered highly significant because of the concordance of the two independent methods. How to interpret it is not yet clear. It is possible that, in the case of primary importance of verbal information and priority of the visual channel for the repression from consciousness of artificially irrelevant information, a safety mechanism is activated: the amplified signal enters the brain cortex, where it is retained in the short-term iconic memory. This enables a reaction to this stimulus (if necessary), in the presence of any additional sign involving selective attention.  相似文献   

5.
Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs).  相似文献   

6.
The selective nature of human perception and action implies a modulatory interaction between sensorimotor processes and attentional processes. This paper explores the use of functional imaging in humans to explore the mechanisms of perceptual selection and the fate of irrelevant stimuli that are not selected. Experiments with positron emission tomography show that two qualitatively different patterns of modulation of cerebral blood flow can be observed in experiments where non-spatial visual attention and auditory attention are manipulated. These patterns of modulation of cerebral blood flow modulation can be described as gain control and bias signal mechanisms. In visual and auditory cortex, the dominant change in cerebral blood flow associated with attention to either modality is related to a bias signal. The relation of these patterns of modulation to attentional effects that have been observed in single neurons is discussed. The existence of mechanisms for selective perception raises the more general question of whether irrelevant ignored stimuli are nevertheless perceived. Lavie''s theory of attention proposes that the degree to which ignored stimuli are processed varies depending on the perceptual load of the current task. Evidence from behavioural and functional magnetic resonance imaging studies of ignored visual motion processing is presented in support of this proposal.  相似文献   

7.
Ding JR  Liao W  Zhang Z  Mantini D  Xu Q  Wu GR  Lu G  Chen H 《PloS one》2011,6(10):e26596
Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks.  相似文献   

8.
Perception arises through an interaction between sensory input and prior knowledge. We propose that at least two brain areas are required for such an interaction: the ''site'' where analysis of afferent signals occurs and the ''source'' which applies the relevant prior knowledge. In the human brain, functional imaging studies have demonstrated that selective attention modifies activity in early visual processing areas specific to the attended feature. Early processing areas are also modified when prior knowledge permits a percept to emerge from an otherwise meaningless stimulus. Sources of this modification have been identified in parietal cortex and in prefrontal cortex. Modification of early processing areas also occurs on the basis of prior knowledge about the predicted sensory effects of the subject''s own actions. Activity associated with mental imagery resembles that associated with response preparation (for motor imagery) and selective attention (for sensory imagery) suggesting that mental imagery reflects the effects of prior knowledge on sensory processing areas in the absence of sensory input. Damage to sensory processing areas can lead to a form of sensory hallucination which seems to arise from the interaction of prior knowledge with random sensory activity. In contrast, hallucinations associated with schizophrenia may arise from a failure of prior knowledge about motor intentions to modify activity in relevant sensory areas. When functioning normally, this mechanism permits us to distinguish our own actions from those of independent agents in the outside world. Failure to make this distinction correctly may account for the strong association between hallucinations and paranoid delusions in schizophrenia; the patient not only hears voices, but attributes (usually hostile) intentions to these voices.  相似文献   

9.
The present paper concentrates on the impact of visual attention task on structure of the brain functional and effective connectivity networks using coherence and Granger causality methods. Since most studies used correlation method and resting-state functional connectivity, the task-based approach was selected for this experiment to boost our knowledge of spatial and feature-based attention. In the present study, the whole brain was divided into 82 sub-regions based on Brodmann areas. The coherence and Granger causality were applied to construct functional and effective connectivity matrices. These matrices were converted into graphs using a threshold, and the graph theory measures were calculated from it including degree and characteristic path length. Visual attention was found to reveal more information during the spatial-based task. The degree was higher while performing a spatial-based task, whereas characteristic path length was lower in the spatial-based task in both functional and effective connectivity. Primary and secondary visual cortex (17 and 18 Brodmann areas) were highly connected to parietal and prefrontal cortex while doing visual attention task. Whole brain connectivity was also calculated in both functional and effective connectivity. Our results reveal that Brodmann areas of 17, 18, 19, 46, 3 and 4 had a significant role proving that somatosensory, parietal and prefrontal regions along with visual cortex were highly connected to other parts of the cortex during the visual attention task. Characteristic path length results indicated an increase in functional connectivity and more functional integration in spatial-based attention compared with feature-based attention. The results of this work can provide useful information about the mechanism of visual attention at the network level.  相似文献   

10.
In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory processing in neocortical network models equipped with synaptic plasticity.  相似文献   

11.
Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60–80 years) and 18 younger (aged 22–33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.  相似文献   

12.
Spatial selective attention is the mechanism that facilitates the selection of relevant information over irrelevant information in the visual field. The current study investigated whether foreknowledge of the presence or absence of distractors surrounding an impending target stimulus results in preparatory changes in visual cortex. We cued the location of the target and the presence or absence of distractors surrounding the target while changes in blood oxygen level dependent (BOLD) signals were measured. In line with prior work, we found that top-down spatial attention resulted in an increased contralateral BOLD response, evoked by the cue throughout early visual cortex (areas V1, V2 and V3). In addition, cues indicating distractor presence evoked a substantial increase in the magnitude of the BOLD signal in visual area V3, but not in V2 or V1. This study shows that prior knowledge concerning the presence of a distractor results in enhanced attentional modulation of visual cortex, in visual areas where neuronal receptive fields are large enough to encompass both targets and distractors. We interpret these findings as evidence that top-down attentional control processes include active preparatory suppression mechanisms for irrelevant, distracting information in the visual scene.  相似文献   

13.
The human visual system has a remarkable ability to successfully operate under a variety of challenging viewing conditions. For example, our object-recognition capabilities are largely unaffected by low-contrast (e.g., foggy) environments. The basis for this ability appears to be reflected in the neural responses in higher cortical visual areas that have been characterized as being invariant to changes in luminance contrast: neurons in these areas respond nearly equally to low-contrast as compared to high-contrast stimuli. This response pattern is fundamentally different than that observed in earlier visual areas such as primary visual cortex (V1), which is highly dependent on contrast. How this invariance is achieved in higher visual areas is largely unknown. We hypothesized that directed spatial attention is an important prerequisite of the contrast-invariant responses in higher visual areas and tested this with functional MRI (fMRI) while subjects directed their attention either toward or away from contrast-varying shape stimuli. We found that in the lateral occipital complex (LOC), a visual area important for processing shape information, attention changes the form of the contrast response function (CRF). By directing attention away from the shape stimuli, the CRF in the LOC was similar to that measured in V1. We describe a number of mechanisms that could account for this important function of attention.  相似文献   

14.
Eye movements constitute one of the most basic means of interacting with our environment, allowing to orient to, localize and scrutinize the variety of potentially interesting objects that surround us. In this review we discuss the role of the parietal cortex in the control of saccadic and smooth pursuit eye movements, whose purpose is to rapidly displace the line of gaze and to maintain a moving object on the central retina, respectively. From single cell recording studies in monkey we know that distinct sub-regions of the parietal lobe are implicated in these two kinds of movement. The middle temporal (MT) and medial superior temporal (MST) areas show neuronal activities related to moving visual stimuli and to ocular pursuit. The lateral intraparietal (LIP) area exhibits visual and saccadic neuronal responses. Electrophysiology, which in essence is a correlation method, cannot entirely solve the question of the functional implication of these areas: are they primarily involved in sensory processing, in motor processing, or in some intermediate function? Lesion approaches (reversible or permanent) in the monkey can provide important information in this respect. Lesions of MT or MST produce deficits in the perception of visual motion, which would argue for their possible role in sensory guidance of ocular pursuit rather than in directing motor commands to the eye muscle. Lesions of LIP do not produce specific visual impairments and cause only subtle saccadic deficits. However, recent results have shown the presence of severe deficits in spatial attention tasks. LIP could thus be implicated in the selection of relevant objects in the visual scene and provide a signal for directing the eyes toward these objects. Functional imaging studies in humans confirm the role of the parietal cortex in pursuit, saccadic, and attentional networks, and show a high degree of overlap with monkey data. Parietal lobe lesions in humans also result in behavioral deficits very similar to those that are observed in the monkey. Altogether, these different sources of data consistently point to the involvement of the parietal cortex in the representation of space, at an intermediate stage between vision and action.  相似文献   

15.
The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity.  相似文献   

16.
The existence of a network of brain regions which are activated when one undertakes a difficult visual search task is well established. Two primary nodes on this network are right posterior parietal cortex (rPPC) and right frontal eye fields. Both have been shown to be involved in the orientation of attention, but the contingency that the activity of one of these areas has on the other is less clear. We sought to investigate this question by using transcranial direct current stimulation (tDCS) to selectively decrease activity in rPPC and then asking participants to perform a visual search task whilst undergoing functional magnetic resonance imaging. Comparison with a condition in which sham tDCS was applied revealed that cathodal tDCS over rPPC causes a selective bilateral decrease in frontal activity when performing a visual search task. This result demonstrates for the first time that premotor regions within the frontal lobe and rPPC are not only necessary to carry out a visual search task, but that they work together to bring about normal function.  相似文献   

17.
Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex.  相似文献   

18.
Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.  相似文献   

19.
The temporal dynamics of evoked brain responses are normally characterized using electrophysiological techniques but the positron emission tomography study presented here revealed a temporal aspect of reading by correlating the duration a word remained in the visual field with evoked haemodynamic response. Three distinct types of effects were observed: in visual processing areas, there were linear increases in activity with duration suggesting that visual processing endures throughout the time the stimulus remains in the visual field. In right hemisphere areas, there were monotonic decreases in activity with increased duration which we relate to decreased attention for longer stimulus durations. In left hemisphere word processing areas there were inverted U-shaped dependencies between activity and word duration indicating that, after 400-600 ms, activity in word processing areas is progressively reduced if the word remains in the visual field. We conclude that these inverted U effects in left hemisphere language areas reflect the temporal dynamics of visual word processing and we highlight the implication of these effects for the design of activation studies involving reading.  相似文献   

20.
Delayed striate cortical activation during spatial attention   总被引:12,自引:0,他引:12  
Recordings of event-related potentials (ERPs) and event-related magnetic fields (ERMFs) were combined with functional magnetic resonance imaging (fMRI) to study visual cortical activity in humans during spatial attention. While subjects attended selectively to stimulus arrays in one visual field, fMRI revealed stimulus-related activations in the contralateral primary visual cortex and in multiple extrastriate areas. ERP and ERMF recordings showed that attention did not affect the initial evoked response at 60-90 ms poststimulus that was localized to primary cortex, but a similarly localized late response at 140-250 ms was enhanced to attended stimuli. These findings provide evidence that the primary visual cortex participates in the selective processing of attended stimuli by means of delayed feedback from higher visual-cortical areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号