首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies with phospholipase C have indicated that two-thirds of the phosphatidylethanolamine of rat liver endoplasmic reticulum is located in the inner leaflet of the membrane bilayer. Phosphatidyl[14C]ethanolamine is synthesised in microsomes incubated with CDP[14C]ethanolamine. Using phospholipase C as a probe we have observed that the labelled phospholipid is initially (1–2 min) concentrated in the ‘outer leaflet’ of the membrane bilayer. The specific activity of this pool of phosphatidylethanolamine was 3.5 times that of the inner leaflet. If, however, the microsomes were opened with 0.4% taurocholate or the French pressure cell to make both sides of the bilayer available to phospholipase C, the phosphatidylethanolamine behaves as a single pool for hydrolysis. On longer incubation, up to 30 min, with CDP[14C]ethanolamine the specific activity of the outer leaflet phosphatidylethanolamine becomes close to that of the inner leaflet. In chase experiments, in which microsomal phosphatidylethanolamine was labelled by incubation with CDP[14C]ethanolamine for 1 min, the reaction stopped by addition of calcium, and the microsomes isolated by centrifugation and reincubated, labelled phosphatidylethanolamine was transferred from the ‘outer leaflet’ to the ‘inner leaflet’, so that both were equally labelled. These observations suggest that phosphatidylethanolamine is synthesised at the cytoplasmic leaflet of the endoplasmic reticulum and subsequently transferred across the membrane to the cisternal leaflet of the bilayer. Transmembrane movement is apparently temperature-dependent and independent of continued synthesis of phosphatidylethanolamine.  相似文献   

2.
The lipid composition of purified Torpedo cholinergic synaptic vesicles was determined and their distribution between the inner and outer leaflets of the vesicular membrane was investigated. The vesicles contain cholesterol and phospholipids at a molar ratio of 0.63. The vesicular phospholipids are (mol% of total phospholipids): phosphatidylcholine (40.9); phosphatidylethanolamine (24.6); plasmenylethanolamine (11.5); sphingomyelin (12); phosphatidylserine (7.3); phosphatidylinositol (3.7). The asymmetry of the synaptic vesicle membranes was investigated by two independent approaches: (a) determining accessibility of the amino lipids to the chemical label trinitrobenzenesulphonic acid (TNBS); (b) determining accessibility of the vesicular glycerophospholipids to phospholipase C (Bacillus cereus). TNBS was found to render the vesicles leaky and thus cannot be used reliably to determine the asymmetry of Torpedo synaptic vesicle membranes. Incubation of the vesicles with phospholipase C (Bacillus cereus) results in biphasic hydrolysis of the vesicular glycerophospholipids. About 45% of the phospholipids are hydrolysed in less than 1 min, during which no vesicular acetylcholine is released. In the second phase, the hydrolysis of the phospholipids slows down markedly and is accompanied by loss of all the vesicular acetylcholine. These findings suggest that the lipids hydrolysed during the first phase are those comprising the outer leaflet. Analysis of the results thus obtained indicate that the vesicular membrane is asymmetric: all the phosphatidylinositol, 77% of the phosphatidylethanolamine, 47% of the plasmenylethanolamine and 58% of the phosphatidylcholine were found to reside in the outer leaflet. Since phosphatidylserine is a poor substrate for phospholipase C (B. cereus), its distribution between the two leaflets of the synaptic vesicle membrane is only suggestive.  相似文献   

3.
Phospholipid translocation (flip-flop) across membrane bilayers is typically assessed via assays utilizing partially water-soluble phospholipid analogs as transport reporters. These assays have been used in previous work to show that phospholipid translocation in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum is facilitated by specific membrane proteins (flippases). To extend these studies to natural phospholipids while providing a framework to guide the purification of a flippase, we now describe an assay to measure the transbilayer translocation of dipalmitoylphosphatidylcholine, a membrane-embedded phospholipid, in proteoliposomes generated from detergent-solubilized rat liver endoplasmic reticulum. Translocation was assayed using phospholipase A(2) under conditions where the vesicles were determined to be intact. Phospholipase A(2) rapidly hydrolyzed phospholipids in the outer leaflet of liposomes and proteoliposomes with a half-time of approximately 0.1 min. However, for flippase-containing proteoliposomes, the initial rapid hydrolysis phase was followed by a slower phase reflecting flippase-mediated translocation of phospholipids from the inner to the outer leaflet. The amplitude of the slow phase was decreased in trypsin-treated proteoliposomes. The kinetic characteristics of the slow phase were used to assess the rate of transbilayer equilibration of phospholipids. For 250-nm diameter vesicles containing a single flippase, the half-time was 3.3 min. Proportionate reductions in equilibration half-time were observed for preparations with a higher average number of flippases/vesicle. Preliminary purification steps indicated that flippase activity could be enriched approximately 15-fold by sequential adsorption of the detergent extract onto anion and cation exchange resins.  相似文献   

4.
The transbilayer distribution of phospholipids in chicken brain microsomal membranes has been investigated using trinitrobenzenesulfonic acid and phospholipase C from Clostridium weichii. The exposure of intact microsomes to trinitrobenzenesulfonic acid showed that the labelling of aminophospholipids followed biphasic kinetics, indicating that these membranes contain a fast- and a slow-reacting pool of aminophospholipids. Use of microsomes radioiodinated on their surface led to the conclusion that the fast-reacting pool may be located on the outer leaflet of the microsomal vesicles. It contains about 35% of the phosphatidylethanolamine, 29% of the ethanolamine plasmalogens and 18% of the phosphatidylserine. The treatment of intact microsomes with the phospholipase C Cl. welchii produced the hydrolysis of 50% of the phospholipids without any loss of their permeability properties, indicating that they are not permeable to the hydrolase. Phospholipids extracted from the microsomes were hydrolyzed rapidly by the phospholipase C with the exception of phosphatidylserine and phosphatidylinositol. In intact microsomes about 90% of phosphatidylcholine, 32% of ethanolamine phospholipids and 60% of sphingomyelin were accessible to the phospholipase. These results suggest that the phospholipids have an asymmetric distribution in chicken brain microsomes, the external leaflet containing about 75% of the choline phospholipids and 25% of the aminophospholipids, whereas an opposite distribution is observed in the inner leaflet.  相似文献   

5.
The transverse distribution of phospholipids in the membranes of subfractions of the Golgi complex was investigated by using phospholipase C and 2,4,6-trinitrobenzenesulphonic acid as probes. In trans-enriched Golgi membranes, 26% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate or for hydrolysis by phospholipase C, and 72% of the phosphatidylcholine is hydrolysed by phospholipase C. In cis-enriched Golgi membranes, 45% of the phosphatidylethanolamine is available for reaction with trinitrobenzenesulphonate and for hydrolysis by phospholipase C, and 95% of the phosphatidylcholine is hydrolysed by phospholipase C. Under the conditions used with either probe the contents of the Golgi vesicles labelled with either [3H]palmitic acid or [14C]leucine were retained. Galactosyltransferase activity of the membrane vesicles was partially inhibited by the experimental procedures used to investigate the transverse distribution of phospholipids. However, the residual activity was latent, suggesting that the vesicles remained closed. Trinitrobenzenesulphonic acid caused no detectable morphological change in either Golgi fraction. Phospholipase C treatment caused morphological changes, including fusion of vesicles and the appearance of 'signet-ring' profiles in some vesicles; however, the vesicles remained closed and the bilayer was retained. It appears, therefore, that neither probe causes major disruption of the Golgi vesicles nor gains access to the inner surface of the membrane bilayer. These observations suggest that phospholipids have a transverse asymmetry in Golgi membranes, that this distribution differs in trans and cis membranes, and that the phospholipid structure of Golgi membranes is inconsistent with a simple flow of membrane bilayer from endoplasmic reticulum to Golgi membranes to plasma membrane.  相似文献   

6.
The phospholipids of intact microsomal membranes were hydrolysed 50% by phospholipase C of Clostridium welchii, without loss of the secretory protein contents of the vesicle, which are therefore not permeable to the phospholipase. Phospholipids extracted from microsomes and dispersed by sonication were hydrolysed rapidly by phospholipase C-Cl. welchii with the exception of phosphatidylinositol. Assuming that only the phospholipids of the outside of the bilayer of the microsomal membrane are hydrolysed in intact vesicles, the composition of this leaflet was calculated as 84% phosphatidylcholine, 8% phosphatidylethanolamine, 9% sphingomyelin and 4% phosphatidylserine, and that of the inner leaflet 28% phosphatidylcholine, 37% phosphatidylethanolamine, 6% phosphatidylserine and 5% sphingomyelin. Microsomal vesicles were opened and their contents released in part by incubation with deoxycholate (0.098%) lysophosphatidylcholine (0.005%) or treatment with the French pressure cell. Under these conditions, hydrolysis of the phospholipids by phospholipase C-Cl. welchii was increased and this was mainly due to increased hydrolysis of those phospholipids assigned to the inner leaflet of the bilayer, phosphatidylethanolamine and phosphatidylserine. Phospholipase A2 of bee venom and phospholipase C of Bacillus cereus caused rapid loss of vesicle contents and complete hydrolysis of the membrane phospholipids, with the exception of sphingomyelin which is not hydrolysed by the former enzyme.  相似文献   

7.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   

8.
In a further study of the transbilayer distribution of phospholipids in rod disk membranes, the amino group reagent, trinitrobenzenesulfonate, and the phospholipid-hydrolyzing enzyme, phospholipase D, have been used alone and in combination.Under carefully defined conditions (1 mM trinitrobenzenesulfonate, pH 7.4, 20°C, darkness), trinitrobenzenesulfonate yields limited final levels of modification of phosphatidylethanolamine and phosphatidylserine, suggesting only minor reagent penetration and membrane disturbance under these conditions.Treatment of stacked disks with trinitrobenzenesulfonate under these conditions leads to a biphasic modification of the a aminophospholipids. Relatively fast (less than 1 h) modification of 50% phosphatidylethanolamine and 40% phosphatidylserine occurs, slowly rising (approx. 3 h) to 60 and 50%, respectively.Extensive treatment of stacked disks with phospholipase D leads to the hydrolysis of 55% phosphatidylcholine and 50% phosphatidylethanolamine, while phosphatidylserine is hardly attacked by this enzyme.Treatment of stacked disks with trinitrobenzenesulfonate after prior treatment with phospholipase D leads to no further modification than that maximally obtained with either reagent alone: about one-half of the three major phospholipid classes is accessible. Although both reagents differ greatly in molecular size, mode of action and other properties, they apparently see the same pool of phosphatidylethanolamine, their joint substrate. Considering that we start with the original right-side-out configuration, that all phospholipids can in principle be modified (no shielding) and that the membrane remains essentially intact, we conclude that the accessible lipid pool represents the outer face of the disk membranes.These results confirm our earlier conclusions from treatment with three phospholipases that the three major phospholipids are nearly symmetrically distributed over the two faces of the disk membrane.The divergence with the conclusions of other investigators is most likely explained by their use of disk membranes (disk vesicles) in which the original phospholipid distribution had not been maintained and/or of conditions under which trinitrobenzenesulfonate markedly penetrates the membrane.  相似文献   

9.
1. The rate of synthesis of membrane phospholipid was studied in rat liver and seminal vesicles by following the incorporation of [(32)P]orthophosphate, [(14)C]choline and [(14)C]glycerol. Particular emphasis was laid on the endoplasmic reticulum, which was fractionated into smooth microsomal membranes, heavy rough membranes, light rough membranes and free polyribosomes. 2. Phospholipid labelling patterns suggested a heterogeneity in the synthesis and turnover of the different lipid moieties of smooth and rough endoplasmic membranes. The major phospholipids, phosphatidylcholine and phosphatidylethanolamine, were labelled relatively rapidly with (32)P over a short period of time whereas incorporation of radioisotope into the minor phospholipids, sphingomyelin, lysolecithin and phosphatidylinositol proceeded slowly but over a longer period of time. 3. The incorporation of orotic acid into RNA and labelled amino acids into protein of the four submicrosomal fractions was also studied. 4. Rapid growth of the liver was induced by the administration of growth hormone and tri-iodothyronine to hypophysectomized and thyroidectomized rats and by partial hepatectomy. Growth of seminal vesicles of castrated rats was stimulated with testosterone propionate. 5. The rate of labelling of membrane phospholipids was enhanced in all major subcellular particulate fractions (nuclear, mitochondrial and microsomal) during induced growth. However, it was in the rough endoplasmic reticulum that the accumulation of phospholipids, RNA and protein was most marked. The effect of hormone administration was also to accelerate preferentially the labelling with (32)P of sphingomyelin relative to that of phosphatidylcholine or phosphatidylethanolamine. 6. Time-course analyses showed that, in all four growth systems studied, the enhancement of the rate of membrane phospholipid synthesis coincided with the rather abrupt increase in the synthesis of RNA and protein of the rough endoplasmic reticulum. Growth hormone and tri-iodothyronine administered to hypophysectomized rats had additive effects in all the biosynthetic processes. The latent period of action of each hormone was maintained so that two waves of proliferation of endoplasmic reticulum occurred if the hormones were administered simultaneously. 7. It is concluded that there is some mechanism in the cell that tightly co-ordinates the formation of membranes, especially those of the endoplasmic reticulum, when an increased demand is made for protein synthesis.  相似文献   

10.
Cell-free transfer of membrane lipids. Evidence for lipid processing   总被引:1,自引:0,他引:1  
A latent phospholipase A is concentrated in cis elements of rat liver Golgi apparatus, the presumed sites of fusion of the 50-70-nm transition vesicles formed from endoplasmic reticulum. As a result, conversion of transferred phospholipids to their corresponding lysoforms may provide an index of post transfer lipid processing in a corresponding reconstituted membrane transfer system. To label the phosphatidylcholine of transitional endoplasmic reticulum in vitro, [14C]CDP-choline and endogenous cytidyltransferases were used. In the reconstituted transfer system, the radiolabeled phosphatidylcholine was transferred via transition vesicles to Golgi apparatus immobilized on nitrocellulose strips in a time- and temperature-dependent process. Transfer was promoted by ATP and the ATP-dependent transfer was specific for cis Golgi apparatus elements as acceptor. Trans Golgi apparatus elements were ineffective as acceptors. Median Golgi apparatus elements were intermediate. A portion of the transferred phosphatidylcholine was converted subsequently to lysophosphatidylcholine also in a time- and ATP-dependent manner. The phospholipase A activity of the Golgi apparatus was more than 90% latent (active site located on the lumens of the Golgi apparatus membranes). Therefore, the lipid-containing vesicles derived from endoplasmic reticulum must have combined with cis Golgi apparatus membranes as the basis for Golgi apparatus-dependent phospholipase A processing of endoplasmic reticulum-derived phosphatidylcholine. Since the lipids were processed by phospholipase A in approximately the same proportion as occurs in situ, the findings offer evidence both for the specificity of the ATP-dependent component of cell-free lipid transfer from endoplasmic reticulum to Golgi apparatus and its fidelity to lipid transfer observed in vivo.  相似文献   

11.
A remarkable and immediate decrease in GDP-mannose:retinyl phosphate mannosyltransferase activity was found on pre-incubation of rat liver postnuclear membranes with phospholipase A2 or phospholipase C. Under the same conditions of pre-incubation (1 min at 37 degrees C) trypsin did not affect the enzyme activity, whereas pre-incubation for 30 min with trypsin and Pronase abolished enzyme activity. The lipid extract of untreated rat liver membranes partially restored enzyme activity after phospholipase treatment. Sphingomyelin was as active as the endogenous lipids. Other phospholipids were less active in the following order: phosphatidylcholine greater than phosphatidylethanolamine greater than phosphatidylinositol = phosphatidylserine. Dolichyl phosphate mannose synthesis was inhibited less (33%) by phospholipase C than was Ret-P-Man synthesis (98.5%) under identical conditions of incubation, which included 0.025% Triton. However, retinyl phosphate mannose synthesis by purified endoplasmic reticulum was found to be resistant to phospholipase C. Mixing experiments failed to demonstrate an inhibitory effect of the phospholipase-treated postnuclear membrane fraction on the synthetic activity of the endoplasmic reticulum, thus excluding the release of an inhibitory factor from the postnuclear membranes.  相似文献   

12.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

13.
Rat liver microsomes and microsomal subfractions isolated by density equilibration were submitted to a quantitative morphological and biochemical analysis. The total area of the endoplasmic reticulum was estimated at 7.3 m2 per g of liver. The microsome fraction contained 2.8 mg of phospholipids and 6.7 mg of proteins per m2 of membrane area. After correction for ribosomal and intracisternal proteins, the latter value was lowered to 4.7 mg of membrane protein per m2. More than half of the microsomal vesicles carried ribosomes. After density equilibration of the microsomes, the distribution pattern of ribosomes followed closely that of RNA. The ribosome load of the microsomal vesicles increased steadily along the density gradient, indicating the existence of a continuous spectrum of microsomal entities ranging from entirely ribosome-free vesicles to vesicles heavily coated with ribosomes.  相似文献   

14.
The transverse distribution of phospholipids and their interactions with marker enzymes were investigated in pig heart mitoplasts and inverted vesicles, using phospholipase A2 from N. naja venom and chemical labeling with TNBS and FDNB. Morphological integrity was checked by freeze-fracturing. Fifty percent of phosphatidylcholine was hydrolyzed in mitoplasts as well as in inverted vesicles, suggesting an even distribution of this phospholipid on the two halves of the inner membrane; however, the fatty acid distribution did not appear the same in the two membrane fractions. Cardiolipin is exclusively hydrolyzed in inverted vesicles proving its location on the inner face of the inner membrane. The results obtained from phospholipase hydrolysis and TNBS labeling suggest that three different pools of phosphatidylethanolamine occur in the membrane: a first pool—about 50–60% of the total membrane phosphatidylethanolamine–is quickly accessible from the two sides of the membrane, a second pool—about 20–30% is slowly available, and finally 20–30% are buried within the membrane and inaccessible to the phospholipase and the probe. The cytochrome c oxidase activity increased in mitoplasts with the phospholipase attack suggesting a better accessibility of added cytochrome c after the attack. The rotenone-sensitive NADH-cytochrome c reductase was activated in mitoplasts but completely inactivated in inverted vesicles by the attack; the addition of cardiolipin liposomes restored the latter activity. The soluble matricial malate dehydrogenase was released, but the particulate form of this enzyme, strongly associated to the membrane, was detached only after attack of inverted vesicles.  相似文献   

15.
Calcium transport was examined in microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue using chlorotetracycline as a fluorescent probe. This probe demonstrates an increase in fluorescence corresponding to calcium accumulation within the vesicles which can be collapsed by the addition of the calcium ionophore A23187. Calcium uptake in the microsomal vesicles was ATP dependent and completely inhibited by orthovanadate. Centrifugation of the microsomal membrane fraction on a linear 15 to 45% (w/w) sucrose density gradient revealed the presence of a single peak of calcium uptake which comigrated with the marker for endoplasmic reticulum. The calcium transport system associated with endoplasmic reticulum vesicles was then further characterized in fractions produced by centrifugation on discontinous sucrose density gradients. Calcium transport was insensitive to carbonylcyanide m-chlorophenylhydrazone indicating the presence of a primary transport system directly linked to ATP utilization. The endoplasmic reticulum vesicles contained an ATPase activity that was calcium dependent and further stimulated by A23187 (Ca(2+), A23187 stimulated-ATPase). Both calcium uptake and Ca(2+), A23187 stimulated ATPase demonstrated similar properties with respect to pH optimum, inhibitor sensitivity, substrate specificity, and substrate kinetics. Treatment of the red beet endoplasmic reticulum vesicles with [gamma-(32)P]-ATP over short time intervals revealed the presence of a rapidly turning over 96 kilodalton radioactive peptide possibly representing a phosphorylated intermediate of this endoplasmic reticulum associated ATPase. It is proposed that this ATPase activity may represent the enzymic machinery responsible for mediating primary calcium transport in the endoplasmic reticulum linked to ATP utilization.  相似文献   

16.
The translocation of: (i) phosphatidylserine (PtdSer) from its site of synthesis on microsomal membranes to its site decarboxylation in mitochondrial membranes and (ii) phosphatidylethanolamine (PtdEtn) from the mitochondria to its site of methylation to phosphatidylcholine on microsomal membranes has been reconstituted in cell-free systems consisting of rat liver mitochondria and microsomes. Two types of systems have been reconstituted. In one, the translocation of newly made PtdSer or PtdEtn was examined by incubation of microsomes and mitochondria with [3-3H]serine. In the other, membranes were prelabeled with radioactive PtdSer or PtdEtn, and the transfer of these two lipids between mitochondria and microsomes was monitored. For the transfer of both PtdSer from microsomes to mitochondria and PtdEtn from mitochondria to microsomes, newly made phospholipids were translocated much more readily than pre-existing phospholipids. The data suggest that with respect to their translocation between these two organelles, the pools of newly synthesized PtdSer and PtdEtn were distinct from the pools of "older" phospholipids pre-existing in the membranes. Transfer of neither phospholipid in vitro depended on the presence of cytosolic proteins (i.e. soluble phospholipid transfer proteins) or on the hydrolysis of ATP, although there was some stimulation of PtdSer transfer by ATP and several other nucleoside mono-, di-, and triphosphates. The data are consistent with a collision-based mechanism in which the endoplasmic reticulum and mitochondria come into contact with one another, thereby effecting the transfer of phospholipids. The proposal that there is contact between the endoplasmic reticulum and mitochondria is supported by the recent isolation of a membrane fraction having many, but not all, of the properties of the endoplasmic reticulum, but which was isolated in association with mitochondria (Vance, J. E. (1990) J. Biol. Chem. 265, 7248-7256).  相似文献   

17.
Crude microsomal fractions have been subfractionated by differential ultracentrifugation into subfractions A, B, and C, corresponding to light smooth, heavy smooth, and rough microsomal membranes, respectively. The purity and the vesiculation of the membranes were checked biochemically. Subfraction C showed the highest ethanolamine base-exchange activity, both on phospholipid and protein bases. The other two subfractions had roughly similar activities. The kinetic behavior of the enzyme activity, although anomalous, was similar in the three subfractions. Treatment of the vesicles with Pronase or with mercury-dextran produced inactivation of the ethanolamine base-exchange reaction in the three subfractions. These findings suggest that the active site of base-exchange activity would be localized on the external leaflet of the vesicles. Treatment of the membranes with trinitrobenzenesulfonic acid (TNBS) has shown that the newly synthesized phosphatidylethanolamine (PE) belongs to a pool easily reacting with the probe, independent of the subfraction investigated. On the other hand, the distribution of the bulk membrane PE reacting with TNBS differs in the three subfractions examined. It is concluded that the newly synthesized PE and probably the active site of the enzyme are on the external leaflet of the membrane in all subfractions and that the ethanolamine base-exchange reaction has similar properties in all subfractions.  相似文献   

18.
Localization of cytochrome P-450 on various membrane fractions of rat liver cells was studied by direct immunoelectron microscopy using ferritin-conjugated antibody to the cytochrome. The outer surfaces of almost all the microsomal vesicles were labeled with ferritin particles. The distribution of the particles on each microsomal vesicle was usually heterogeneous, indicating clustering of the cytochrome, and phenobarbital treatment markedly increased the labeled regions of the microsomal membranes. The outer nuclear envelopes were also labeled with ferritin particles, while on the surface of other membrane structures such as Golgi complexes, outer mitochondrial membranes and plasma membranes the labeling was scanty and at the control level. The present observation indicates that cytochrome P-450 molecules are localized exclusively on endoplasmic reticulum membranes and outer nuclear envelopes where they are probably distributed not uniformly but heterogeneously, forming clusters or patches. The physiological significance of such microheterogeneity in the distribution of the cytochrome on endoplasmic reticulum membranes is discussed.  相似文献   

19.
[14C]Choline was incorporated into microsomal membranes in vivo, and from CDP-[14C]choline in vitro, and the site of incorporation determined by hydrolysis of the outer leaflet of the membrane bilayer using phospholipase C from Clostridium welchii. Labelled phosphatidylcholine was found to be concentrated in the outer leaflet of the membrane bilayer with a specific activity approximately three times that of the inner leaflet. During incorporation of CDP-choline and treatment with phospholipase C the vesicles retained labelled-protein contents indicating that they remained intact. When the microsomes were opened with taurocholate after incorporation of [14C]choline in vivo, the labelled phosphatidylcholine behaved as a single pool. Selective hydrolysis of labelled phosphatidylcholine in intact vesicles is not, therefore, a consequence of specificity of phospholipase C. These results indicate that the phosphatidylcholine of the outer leaflet of the microsomal membrane bilayer is preferentially labelled by the choline-phosphotransferase pathway and that this pool of phospholipid does not equilibrate with that of the inner leaflet.  相似文献   

20.
Sahu SK  Gummadi SN 《Biochemistry》2008,47(39):10481-10490
Phospholipid translocation (flip-flop) in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum of eukaryotic cells (rat liver) and bacterial cytoplasmic membranes is a fundamental step in membrane biogenesis. It is known that flip-flop in these membranes occurs without a metabolic energy requirement, bidirectionally with no specificity for phospholipid headgroup. In this study, we demonstrate for the first time ATP-independent flippase activity in endoplasmic reticulum membranes of plants using spinach as a model system. For this, we generated proteoliposomes from a Triton X-100 extract of endoplasmic reticulum membranes of spinach and assayed them for flippase activity using fluorescently labeled phospholipids. The half-time for flipping was found to be 0.7-1.0 min. We also show that (a) proteoliposomes can flip fluorescently labeled analogues of phosphatidylcholine and phosphatidylethanolamine, (b) flipping activity is protein-mediated, (c) more than one class of lipid translocator (flippase) is present in spinach membranes, based on the sensitivity to protease and protein-modifying reagents, and (d) translocation of PC and PE is affected differently upon treatment with protease and protein-modifying reagents. Ca (2+)-dependent scrambling activity was not observed in the vesicles reconstituted from plant ER membranes, ruling out the possibility of the involvement of scramblase in translocation of phospholipids. These results suggest the existence of biogenic membrane flippases in plants and that the mechanism of membrane biogenesis is similar to that found in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号