首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syncytium induction is a characteristic feature of infection by human immunodeficiency virus (HIV) in vitro. The hydrophobic amino terminus of the transmembrane glycoprotein of HIV type 1 is an essential determinant of virus entry into the target cell population and the formation of syncytia in cell culture. To define the role of the HIV type 2 fusion peptide during infection and syncytium formation, we introduced 8 amino acid substitutions into the hydrophobic amino terminus of gp41, changing either the hydrophobicity, the charge, or the polarity of the amino acid. Viruses containing the envelope mutations were analyzed for their syncytium-inducing capacities, levels of infectivity, and envelope processing and expression. Mutations that increased the hydrophobic nature of the fusion peptide increased syncytium formation, whereas mutations which increased the charge and the polarity and/or decreased the hydrophobicity of the fusion domain severely reduced the capacity of the virus to induce syncytia. However, viruses severely compromised for syncytium formation exhibit only slightly lower levels of infectivity.  相似文献   

2.
The infection and subsequent replication rates of human immunodeficiency virus type 1 (HIV-1) affect the pathogenicity. The initial stage of HIV-1 infection is largely regulated by viral envelope sequence. We previously reported that the defective doughnut-shaped particles produced from a persistently infected cell clone, named L-2, obtained from human CD4+ T-cell line MT-4 that was persistently infected with HIV-1 LAI strain, efficiently form particle-mediated syncytia with uninfected human CD4+ T-cell line, MOLT-4. Here, we prepared a molecular clone (pL2) containing the L-2 provirus to characterize the viral genetic region contributing to this activity to form particle-mediated syncytia. Several recombinants were constructed with pNL4-3 by replacing the pL2-derived region including full-length env. Characterization of the particles obtained by transfection with these recombinant clones confirmed that pL2-derived env carried the particle-mediated syncytia formation activity. It is noteworthy that the pL2-derived env region could also contribute to enhancement of infectivity in CD4+ T-cell lines as well as primary peripheral blood mononuclear cells (PBMCs). Thus, the HIV-1 particle-mediated syncytium formation activity could also contribute to the enhancement of HIV-1 infectivity.  相似文献   

3.
The fourth conserved region (C4) of human immunodeficiency virus type 1 (HIV-1) surface glycoprotein has been shown to participate in CD4 binding and to influence viral tropism (A. Cordonnier, L. Montagnier, and M. Emerman, Nature [London] 340:571-574, 1989). To define the role of the corresponding region of HIV-2, we introduce single amino acid changes into the C4 sequence of HIV-2ROD. The effects of these mutations on glycoprotein function and on virus infectivity have been examined. We have shown that the tryptophan residue at position 428 is necessary primarily for CD4 binding. The isoleucine residue at position 421 is necessary for the establishment of productive infection in the promonocytic cell line U937, while it is dispensable to some extent for infection of primary T lymphocytes or the lymphocytic cell line SUP-T1. This replication defect correlated with the failure of the Ile-421-to-Thr (Ile-421-->Thr) mutant glycoprotein to form syncytia in U937 cells. DNA analysis of revertant viruses revealed that a strong selective pressure was exerted on residue 421 of the surface glycoprotein to allow HIV-2 infection of U937 cells. These results demonstrate that this region of HIV-2 plays an important role in determining fusion efficiency in a cell-dependent manner and consequently can influence viral tropism.  相似文献   

4.
In human immunodeficiency virus-1 (HIV-1)-infected cell cultures, cell-to-cell fusion and the formation of multinucleated giant cells (syncytia) are induced as a consequence of interactions between the viral envelope glycoprotein on infected cells and cell surface CD4 molecules on uninfected cells. Although activated CD4+ T cells rapidly form syncytia when cultured with HIV-1 envelope glycoprotein expressing (env+) cells, freshly isolated, unstimulated CD4+ T cells do so more slowly. In these studies, we sought to explore the role of T cell activation in rendering CD4+ T cells susceptible to HIV-1-mediated syncytia formation. Our results indicate that within 2 h of exposure to immunologic stimuli, CD4+ T cells acquire the ability to form syncytia with HIV-1 env+ cells. Both cholera toxin, an inhibitor of protein kinase C (PKC) through its effects on inositol triphosphate and diacylglycerol production, and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a noncompetitive inhibitor (with respect to ATP) of PKC, prevented unstimulated but not previously stimulated CD4+ T cells from forming syncytia with HIV-1 env+ cells. 1-Oleoyl-2-acetyl glycerol, an analog of the PKC activator, diacylglycerol, enhanced syncytia formation whereas ionomycin, a calcium ionophore, had no effect. These results suggest that activation of PKC is essential for previously unstimulated CD4+ T cells to become fusogenic.  相似文献   

5.
Human immunodeficiency virus type-1 (HIV-1) and human T-cell leukemia virus type-I (HTLV-I) have a similar tropism for target cell types, especially for CD4+ T cells. In this study, we provide evidence that receptors of these two viruses exist independently on the target cell. We established an HTLV-I-producing CD8+ T cell line (ILT-8M2) with a remarkable cell fusion capacity. When cocultured with MOLT-4 cells, ILT-8M2 cells induced giant syncytia more efficiently than any other tested HTLV-I-producer cell lines. In contrast to other HTLV-I-producers, ILT-8M2 cells were minimally susceptible to cytopathic effects of HIV-1 due to very low expression of CD4, although they were able to be persistently infected by HIV-1. The indicator MOLT-4 cells are known to respond well to HIV-1-induced cell fusion, but they lose this ability if they become persistently infected with HIV-1 because of the reduction of CD4 receptor expression. ILT-8M2 was, however, still capable of inducing syncytia with the MOLT-4 cells persistently infected by HIV-1 (MOLT-4/IIIB). This syncytium formation was dependent on the HTLV-I-envelope, as it was inhibited by HTLV-I-positive human sera or a monoclonal antibody to HTLV-I gp46 but not by monoclonal antibodies to HIV-1 gp120 or CD4. Moreover, ILT-8M2 cells persistently infected by HIV-1 (ILT-8M2/IIIB) induced both HTLV-I- and HIV-1-mediated syncytia with uninfected MOLT-4 cells. These results suggest that HTLV-I induces cell fusion utilizing receptors on the target cells independent of HIV-1-receptors.  相似文献   

6.
Efficient human immunodeficiency virus (HIV)-1 infection depends on multiple interactions between the viral gp41/gp120 envelope (Env) proteins and cell surface receptors. However, cytoskeleton-associated proteins that modify membrane dynamics may also regulate the formation of the HIV-mediated fusion pore and hence viral infection. Because the effects of HDAC6-tubulin deacetylase on cortical alpha-tubulin regulate cell migration and immune synapse organization, we explored the possible role of HDAC6 in HIV-1-envelope-mediated cell fusion and infection. The binding of the gp120 protein to CD4+-permissive cells increased the level of acetylated alpha-tubulin in a CD4-dependent manner. Furthermore, overexpression of active HDAC6 inhibited the acetylation of alpha-tubulin, and remarkably, prevented HIV-1 envelope-dependent cell fusion and infection without affecting the expression and codistribution of HIV-1 receptors. In contrast, knockdown of HDAC6 expression or inhibition of its tubulin deacetylase activity strongly enhanced HIV-1 infection and syncytia formation. These results demonstrate that HDAC6 plays a significant role in regulating HIV-1 infection and Env-mediated syncytia formation.  相似文献   

7.
In established T-cell lines, the membrane-fusing capacity of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins mediates cytopathic effects, both syncytium formation and single-cell lysis. Furthermore, changes in the HIV-1 envelope glycoproteins are responsible for the increased CD4(+) T-cell-depleting ability observed in infected monkeys upon in vivo passage of simian-human immunodeficiency virus (SHIV) chimeras. In this study, a panel of SHIV envelope glycoproteins and their mutant counterparts defective in membrane-fusing capacity were expressed in primary human CD4(+) T cells. Compared with controls, all of the functional HIV-1 envelope glycoproteins induced cell death in primary CD4(+) T-cell cultures, whereas the membrane fusion-defective mutants did not. Death occurred almost exclusively in envelope glycoprotein-expressing cells and not in bystander cells. Under standard culture conditions, most dying cells underwent lysis as single cells. When the cells were cultured at high density to promote syncytium formation, the envelope glycoproteins of the passaged, pathogenic SHIVs induced more syncytia than those of the respective parental SHIV. These results demonstrate that the HIV-1 envelope glycoproteins induce the death of primary CD4(+) T lymphocytes by membrane fusion-dependent processes.  相似文献   

8.
D Dedera  L Ratner 《Journal of virology》1991,65(11):6129-6136
The mechanism of human immunodeficiency virus type 1 (HIV-1) cytopathicity is poorly understood and might involve formation of multinucleated giant cells (syncytia), single-cell lysis, or both. In order to determine the contributions of the fusion domain to syncytium formation, single-cell lysis, and viral infectivity and to clarify the molecular details of these events, insertion mutations were made in the portion of env encoding this sequence in the functional HIV-1 proviral clone HXB2. Viruses produced from these mutant clones were found to have a partial (F3) or complete (F6) loss of syncytium-forming ability in acutely infected CEM, Sup T1, and MT4 T-cell lines. During the early stage of acute infection by F6 virus, there was a loss of the syncytial cytopathic effect, which resulted in increased cell viability, and a 1.9- to 2.6-fold increase in virus yield in the cell lines tested. In the late stage of acute infection, the single-cell cytopathic effect of F6 virus was similar to that of the parental HXB2 virus. The F3 and F6 viruses were also found to have a 1.7- to 43-fold reduction in infectivity compared with the HXB2 virus. The mutant F3 and F6 and parental HXB2 envelope proteins were expressed in vaccinia virus, and the mutant envelope proteins were observed to be defective in their ability to form syncytia. BSC-40 cells infected with vaccinia virus recombinants revealed no differences in kinetics of cleavage, cell surface expression, or CD4 binding capacity of the mutant and parental envelope proteins. These results demonstrate that a loss of syncytium formation results in an attenuation of infectivity and a loss of the syncytial cytopathic effect without a loss of single-cell lysis. These mutants may reflect in tissue culture the changes observed in the HIV isolates in vivo during disease progression, which exhibit marked differences in syncytium production.  相似文献   

9.
C Pique  T Tursz    M C Dokhelar 《The EMBO journal》1990,9(13):4243-4248
The envelope protein of the human T-cell leukemia virus type I (HTLV-I) is highly conserved among the isolates sequenced so far, as opposed to what is observed for the human immunodeficiency virus (HIV) envelope. By linker insertion scanning, we have produced 33 random mutations along the HTLV-I envelope gene, cloned into a eukaryotic expression vector. The resulting envelope products were analysed by immunoprecipitation and syncytia formation after transfection into COS-1 cells. We show here that 25 out of 33 mutations result in a non-functional envelope product as assessed by the lack of ability to form syncytia. In the majority of these mutants, the processing of the envelope gp61 precursor into the mature gp45 and gp20 proteins was affected. We propose that conformational constraints for processing and fusion abilities tend to limit the variability of the HTLV-I envelope. In three mutants, processing was observed but no syncytia were formed. These mutations might affect regions important for HTLV-I envelope functions, such as the receptor binding region.  相似文献   

10.
M Heinkelein  S Sopper    C Jassoy 《Journal of virology》1995,69(11):6925-6931
Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated.  相似文献   

11.
Vesicular stomatitis virus, human immunodeficiency virus type 2, and human foamy virus, which were produced by cell lines expressing galactosyl(alpha1-3)galactosyl (alphaGal) sugars, were found to be less stable in human serum than those from alphaGal-negative cells, indicating that galactosyl(alpha1-3)galactosylation sensitizes these viruses as well as mammalian type C oncoviruses (Rother et al., J. Exp. Med. 182:1345-1355, 1995; Takeuchi et al., Nature (London) 379:85-88, 1996) to complement killing via natural anti-alphaGal antibodies. Thus, virus killing mediated by anti-alphaGal antibodies may play a role as a barrier to animal-to-human infection of various enveloped viruses. Virus vectors for human in vivo gene therapy based on the viruses mentioned above should be produced from alphaGal-negative cells.  相似文献   

12.
fu-1 cells, a nonfusing variant of the L8 line of rat myoblasts, form syncytia upon infection with murine leukemia virus (MuLV) or upon cocultivation with MuLV-infected cells; L8 cells do not form these syncytia, but do fuse into multinucleate myotubes. Syncytia of fu-1 cells form within 1 h after infection. The number of syncytia formed is proportional to the multiplicity of virus within a range of 4 to 16 and is maximum when the cell density is subconfluent. When either XC or fu-1 cells are productively infected with MuLV, they become resistant to syncytia formation by passage 3. The rapid formation of syncytia in fu-1 cells was found amenable for selection of temperature-sensitive mutants of MuLV and for screening additional variants of the L8 line.  相似文献   

13.
Despite equivalent p24 antigen production, HSB-2 T cells expressing glycosylphosphatidylinositol (GPi)-linked CD4 were productively infected without cell death or syncytium formation, unlike HSB-2 transfectants expressing wild-type CD4 (wtCD4). HSB-2 transfectants dually expressing wtCD4 and GPi-linked CD4 formed syncytia and died. Thus, wtCD4 expression is critical for human immunodeficiency virus cytopathic effect in HSB-2 transfectants.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) infects cells through an interaction of HIV-1 envelope protein with CD4 and an appropriate coreceptor on target cells. This interaction often leads to cell fusion, and formation of syncytia. HIV-1-resistant cells expressing either CD4 or a coreceptor are often surrounding HIV-1-susceptible cells, expressing both CD4 and a compatible coreceptor, in vivo. It is therefore worthwhile to investigate whether these HIV-1-resistant cells could cooperate in HIV-1 infection or cell fusion leading to their incorporation into syncytia. When CD4-positive, coreceptor-negative cells were co-cultured with CD4-negative, coreceptor-positive cells and exposed to HIV-1, HIV-1 infection was not established, indicating that CD4 and the coreceptor expressed on different cell surfaces could not cooperate in HIV-1 entry. However, when HIV-1-resistant cells expressing CD4 or a coreceptor or lacking both were mixed with HIV-1-susceptible cells and inoculated with HIV-1, all these HIV-1-resistant cells were similarly incorporated into syncytia induced by HIV-1, indicating a CD4- and coreceptor-independent incorporation of HIV-1-resistant cells into syncytia. This incorporation was impaired by the transfection of these cells with siRNAs for adhesion molecules. Our study demonstrates that HIV-1-resistant cells can be incorporated into syncytia induced by HIV-1 and this incorporation may partially be mediated through adhesion molecules.  相似文献   

15.
The role of human immunodeficiency virus type 1 (HIV-1) accessory genes in pathogenesis has remained unclear because of the lack of a suitable in vivo model. The most controversial of these genes is nef. We investigated the requirement for Nef for in vivo replication and pathogenicity of two isolates of HIV-1 (HIV-1JR-CSF and HIV-1NL4-3) in human fetal thymus and liver implants in severe combined immunodeficient mice. HIV-1JR-CSF and HIV-1NL4-3 differ in their in vitro phenotypes in that HIV-1JR-CSF does not induce syncytia and is relatively noncytopathic, while HIV-1NL4-3 is highly cytopathic and readily induces syncytia. The nef mutants of both isolates grew with kinetics similar to those of parental virus strains in stimulated peripheral blood lymphocytes but demonstrated attenuated growth properties in vivo. HIV-1NL4-3 induced severe depletion of human thymocytes within 6 weeks of infection, whereas its nef mutant did not. Thus, HIV-1 Nef is required for efficient in vivo viral replication and pathogenicity.  相似文献   

16.
We generated Chinese hamster ovary cell lines that stably express wild-type, secreted, and glycosylphosphatidylinositol (GPI)-anchored envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1). The cells expressing wild-type Env (WT cells) express both the precursor gp160 and the mature gp120/gp41 and readily form large syncytia when cocultivated with CD4+ human cells. The cells expressing secreted Env (SEC cells) release 140-kDa precursor and mature 120-kDa envelope glycoproteins into the supernatants. The cells expressing GPI-anchored Env (PI cells) express both 140-kDa precursor and mature gp120/gp41 envelope glycoproteins, which can be released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C (PI-PLC). Both the secreted and PI-PLC-released envelope glycoproteins form oligomers that can be detected on nonreducing sodium dodecyl sulfate-polyacrylamide gels. In contrast to the WT cells, the SEC and PI cells do not form syncytia when cocultivated with CD4+ human cells. The availability of cells producing water-soluble oligomers of HIV-1 Env should facilitate studies of envelope glycoprotein structure and function. The WT cells, which readily induce syncytia with CD4+ cells, provide a convenient system for assessing potential fusion inhibitors and for studying the fusion mechanism of the HIV Env glycoprotein.  相似文献   

17.
Human syncytiotrophoblasts are derived from villous cytotrophoblasts by cell fusion. Coincident with this morphologic transformation, trophoblasts acquire specific endocrine functions, including elaboration of chorionic gonadotropin (hCG). We wondered if syncytia formation was a prerequisite for biochemical differentiation or simply was one part of the differentiation program. By growing purified human cytotrophoblasts under serum-free conditions and manipulating the culture surface, we were able to disassociate morphologic from biochemical differentiation. We have shown previously (Endocrinology 1986, 118:1567) that human cytotrophoblasts grown in the presence of fetal calf serum flatten out, aggregate, and form functional syncytiotrophoblasts in vitro over 24-96 hr. Here we demonstrate that when grown in the absence of serum, the cells do not undergo these morphologic changes, but remain as individual spherical cells. If the culture surface was precoated with fibronectin or a variety of collagens, but not albumin, the cells regained their ability to flatten, aggregate, and form syncytia. Attachment to and syncytia formation on fibronectin was blocked by the addition of the R-G-D-S-containing peptide, Gly-Arg-Gly-Asp-Ser-Pro. Attachment to and syncytia formation on type I collagen was blocked by anti-human fibronectin F(ab')2 fragments, while association with type IV collagen was not affected by this antibody, suggesting that fibronectin mediates trophoblast association with type I collagen, but not type IV. Although syncytia formation did not occur when cytotrophoblasts were cultured under serum-free conditions in the absence of ECM proteins, biochemical differentiation was not affected. These cells secreted hCG at the same rate under serum-free conditions whether they were plated on plastic only--which prevented syncytia formation--or fibronectin, laminin or, type IV collagen--which allowed syncytia formation to occur. Furthermore, cytoplasmic differentiation in the absence of syncytia formation was confirmed by performing transmission electron microscopy on cytotrophoblasts grown under serum-free conditions in the presence of 8-bromo-cAMP. We conclude that syncytia formation is not a prerequisite for biochemical differentiation, but simply part of the trophoblast differentiation program.  相似文献   

18.
19.
The stilbene disulfonic acids 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid and, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid bound the variable-1 immunoglobulin-like domain of CD4 on JM cells. The interaction blocked the binding of the anti-CD4 monoclonal antibody OKT4A and the envelope glycoprotein gp120 of the human immunodeficiency virus type-1 (HIV-1). DIDS inhibited the acute infection of CD4+ cells by HIV-1 with a potency (IC50 approximately 30 microM) similar to that which blocked gp120 binding (IC50 approximately 20 microM) to the cellular antigen. Pretreating uninfected CD4+ C8166 cells with DIDS blocked their fusion with chronically infected gp120+ cells. DIDS covalently and selectively modified lysine 90 of soluble CD4 and abolished the gp120-binding and antiviral properties of the recombinant protein. When added to cells productively infected with HIV-1, DIDS blocked virus growth and cleared cultures of syncytia without inhibiting cellular proliferation. The stilbene disulfonic acids are a novel class of site-specific CD4 antagonists that block multiple CD4-dependent events associated with acute and established HIV-1 infections.  相似文献   

20.
The murine ecotropic retroviral receptor has been demonstrated to function as a mouse cationic amino acid transporter 1 (mCAT1), and is comprised of multiple membranespanning domains. Feral mouse (Mus dunni) cells are not susceptible to infection by the ecotropic Moloney murine leukemia virus (MoMLV), although they can be infected by other ecotropic murine leukemia viruses, including Friend MLV and Rauscher MLV. The relative inability of MoMLV to replicate in M. dunni cells has been attributed to two amino acids (V214 and G236) located within the third extracellular loop of the M. dunni CAT1 receptor (dCAT1). Via the exchange of the third extracellular loop of the mCAT1 cDNA encoding receptor from the permissive mouse and the corresponding portion of cDNA encoding for the nonpermissive M. dunni receptor, we have identified the most critical amino acid residue, which is a glycine located at position 236 within the third extracellular loop of dCAT1. We also attempted to determine the role of the third extracellular loop of the M. dunni CAT1 receptor with regard to the formation of the syncytium. The relationship between dCAT1 and virus-induced syncytia was suggested initially by our previous identification of two MLV isolates (S82F in Moloney and S84A in Friend MLV), both of which are uniquely cytopathic in M. dunni cells. In an attempt to determine the relationship existing between dCAT1 and the virally-induced syncytia, we infected 293-dCAT1 or chimeric dCAT1 cells with the S82F pseudotype virus. The S82F pseudotype virus did not induce the formation of syncytia, but did show increased susceptibility to 293 cells expressing dCAT1. The results of our study indicate that S82F-induced syncytium formation may be the result of cell-cell fusion, but not virus-cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号