首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li X  Wang Q  Zheng Y  Lv S  Ning S  Sun J  Huang T  Zheng Q  Ren H  Xu J  Wang X  Li Y 《Nucleic acids research》2011,39(22):e153
The identification of human cancer-related microRNAs (miRNAs) is important for cancer biology research. Although several identification methods have achieved remarkable success, they have overlooked the functional information associated with miRNAs. We present a computational framework that can be used to prioritize human cancer miRNAs by measuring the association between cancer and miRNAs based on the functional consistency score (FCS) of the miRNA target genes and the cancer-related genes. This approach proved successful in identifying the validated cancer miRNAs for 11 common human cancers with area under ROC curve (AUC) ranging from 71.15% to 96.36%. The FCS method had a significant advantage over miRNA differential expression analysis when identifying cancer-related miRNAs with a fine regulatory mechanism, such as miR-27a in colorectal cancer. Furthermore, a case study examining thyroid cancer showed that the FCS method can uncover novel cancer-related miRNAs such as miR-27a/b, which were showed significantly upregulated in thyroid cancer samples by qRT-PCR analysis. Our method can be used on a web-based server, CMP (cancer miRNA prioritization) and is freely accessible at http://bioinfo.hrbmu.edu.cn/CMP. This time- and cost-effective computational framework can be a valuable complement to experimental studies and can assist with future studies of miRNA involvement in the pathogenesis of cancers.  相似文献   

2.
We sought to evaluate the extent of the contribution of transposable elements (TEs) to human microRNA (miRNA) genes along with the evolutionary dynamics of TE-derived human miRNAs. We found 55 experimentally characterized human miRNA genes that are derived from TEs, and these TE-derived miRNAs have the potential to regulate thousands of human genes. Sequence comparisons revealed that TE-derived human miRNAs are less conserved, on average, than non-TE-derived miRNAs. However, there are 18 TE-derived miRNAs that are relatively conserved, and 14 of these are related to the ancient L2 and MIR families. Comparison of miRNA vs. mRNA expression patterns for TE-derived miRNAs and their putative target genes showed numerous cases of anti-correlated expression that are consistent with regulation via mRNA degradation. In addition to the known human miRNAs that we show to be derived from TE sequences, we predict an additional 85 novel TE-derived miRNA genes. TE sequences are typically disregarded in genomic surveys for miRNA genes and target sites; this is a mistake. Our results indicate that TEs provide a natural mechanism for the origination miRNAs that can contribute to regulatory divergence between species as well as a rich source for the discovery of as yet unknown miRNA genes.  相似文献   

3.
4.
5.
6.
7.
8.
9.
miR-21: a small multi-faceted RNA   总被引:1,自引:0,他引:1  
More than 1000 microRNAs (miRNAs) are expressed in human cells, some tissue or cell type specific, others considered as house-keeping molecules. Functions and direct mRNA targets for some miRNAs have been relatively well studied over the last years. Every miRNA potentially regulates the expression of numerous protein-coding genes (tens to hundreds), but it has become increasingly clear that not all miRNAs are equally important; diverse high-throughput screenings of various systems have identified a limited number of key functional miRNAs over and over again. Particular miRNAs emerge as principal regulators that control major cell functions in various physiological and pathophysiological settings. Since its identification 3 years ago as the miRNA most commonly and strongly up-regulated in human brain tumour glioblastoma [ 1 ], miR-21 has attracted the attention of researchers in various fields, such as development, oncology, stem cell biology and aging, becoming one of the most studied miRNAs, along with let-7, miR-17–92 cluster ('oncomir-1'), miR-155 and a few others. However, an miR-21 knockout mouse has not yet been generated, and the data about miR-21 functions in normal cells are still very limited. In this review, we summarise the current knowledge of miR-21 functions in human disease, with an emphasis on its regulation, oncogenic role, targets in human cancers, potential as a disease biomarker and novel therapeutic target in oncology.  相似文献   

10.
MicroRNA (miRNA) 5′-isoforms, or 5′-isomiRs, are small-RNA species that originate from the same genomic loci as the major miRNAs with their 5′ ends shifted from the 5′ ends of the miRNAs by a few nucleotides. Although 5′-isomiRs have been reported, their origins, properties and potential functions remain to be examined. We systematically studied 5′-isomiRs in human, mouse, fruitfly and worm by analysing a large collection of small non-coding RNA and mRNA profiling data. The results revealed a broad existence of 5′-isomiRs in the four species, many of which were conserved and could arise from genomic loci of canonical and non-canonical miRNAs. The well-conserved 5′-isomiRs have several features, including a preference of the 3p over the 5p arms of hairpins of conserved mammalian miRNAs, altered 5′-isomiRs across species and across tissues, and association with structural variations of miRNA hairpins. Importantly, 5′-isomiRs and their major miRNAs may have different mRNA targets and thus potentially play distinct roles of gene regulation, as shown by an integrative analysis combining miRNA and mRNA profiling data from psoriatic and normal human skin and from murine miRNA knockout assays. Indeed, 18 5′-isomiRs had aberrant expression in psoriatic human skin, suggesting their potential function in psoriasis pathogenesis. The results of the current study deepened our understanding of the diversity and conservation of miRNAs, their plasticity in gene regulation and potential broad function in complex diseases.  相似文献   

11.
12.
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in both plants and animals. miRNA genes have been implicated in a variety of important biological processes, including development, differentiation, apoptosis, fat metabolism, viral infection, and cancer. Similar to protein-coding messenger RNAs, miRNA expression varies between tissues and developmental states. To acquire a better understanding of global miRNA expression in tissues and cells, we have developed isolation, labeling, and array procedures to measure the relative abundance of all of the known human mature miRNAs. The method relies on rapid isolation of RNA species smaller than ~40 nucleotides (nt), direct and homogenous enzymatic labeling of the mature miRNAs with amine modified ribonucleotides, and hybridization to antisense DNA oligonucleotide probes. A thorough performance study showed that this miRNA microarray system can detect subfemtomole amounts of individual miRNAs from <1 mug of total RNA, with 98% correlation between independent replicates. The system has been applied to compare the global miRNA expression profiles in 26 different normal human tissues. This comprehensive analysis identified miRNAs that are preferentially expressed in one or a few related tissues and revealed that human adult tissues have unique miRNA profiles. This implicates miRNAs as important components of tissue development and differentiation. Taken together, these results emphasize the immense potential of microarrays for sensitive and high-throughput analysis of miRNA expression in normal and disease states.  相似文献   

13.
MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p < 0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.  相似文献   

14.
15.
Roles of microRNA in plant defense and virus offense interaction   总被引:1,自引:0,他引:1  
Lu YD  Gan QH  Chi XY  Qin S 《Plant cell reports》2008,27(10):1571-1579
MicroRNAs (miRNA) that are around 22 nucleotides long non-protein-coding RNAs, play key regulatory roles in plants. Recent research findings show that miRNAs are involved in plant defense and viral offense systems. Advances in understanding the mechanism of miRNA biogenesis and evolution are useful for elucidating the complicated roles they play in viral infection networks. In this paper a brief summary of evolution of plant anti-virus defense is given and the function of miRNAs involved in plant-virus competition is highlighted. It is believed that miRNAs have several advantages over homology-dependent and siRNA-mediated gene silencing when they are applied biotechnologically to promote plant anti-virus defense. miRNA-mediated anti-virus pathway is an ancient mechanism with a promising future. However, using miRNAs as a powerful anti-virus tool will be better realized only if miRNA genomics and functions in plant viral infection are fully understood.  相似文献   

16.
17.
18.
19.
20.
病毒感染引发的疾病一直威胁着人类健康。Mi RNA是真核生物表达的一类重要的小分子RNA,可特异性的调节基因与蛋白的表达。mi RNA的研究为病毒性疾病的发生发展提供了新思路,为目前热点研究领域。随着mi RNA的研究深入,一些病毒感染中相关mi RNA的功能也被相继报道,如有些mi RNA具有抑制病毒感染宿主细胞的功能,有些mi RNA则可促进病毒在宿主细胞中的复制,有些mi RNA却参与病毒相关疾病的发生,还有些mi RNA则可作为病毒感染性疾病的特异性生物标志物。本文主要以两种常见肝炎病毒:HBV、HCV为例来系统阐述mi RNA在病毒感染中的相关功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号