首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human immunodeficiency virus type 1 (HIV-1) gp120 exterior envelope glycoprotein interacts with the viral receptor (CD4) and with the gp41 transmembrane envelope glycoprotein. To study the interaction of the gp120 and gp41 envelope glycoproteins, we compared the abilities of anti-gp120 monoclonal antibodies to bind soluble gp120 and a soluble glycoprotein, sgp140, that contains gp120 and gp41 exterior domains. The occlusion or alteration of a subset of gp120 epitopes on the latter molecule allowed the definition of a gp41 "footprint" on the gp120 antibody competition map. The occlusion of these epitopes on the sgp140 glycoprotein was decreased by the binding of soluble CD4. The gp120 epitopes implicated in the interaction with the gp41 ectodomain were disrupted by deletions of the first (C1) and fifth (C5) conserved gp120 regions. These deletions did not affect the integrity of the discontinuous binding sites for CD4 and neutralizing monoclonal antibodies. Thus, the gp41 interface on the HIV-1 gp120 glycoprotein, which elicits nonneutralizing antibodies, can be removed while retaining immunologically desirable gp120 structures.  相似文献   

2.
Insertion of four amino acids into various locations within the amino-terminal halves of the human immunodeficiency virus type 1 gp120 or gp41 envelope glycoprotein disrupts the noncovalent association of these two envelope subunits (M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W. C. Goh, E. Terwilliger, A. Dayton, C. Rosen, W. A. Haseltine, and J. Sodroski, Science 237:1351-1355, 1987). To localize the determinants on the gp120 envelope glycoprotein important for subunit association, amino acids conserved among primate immunodeficiency viruses were changed. Substitution mutations affecting either of two highly conserved regions located at the amino (residues 36 to 45) and carboxyl (residues 491 to 501) ends of the mature gp120 molecule resulted in nearly complete dissociation of the envelope glycoprotein subunits. Partial dissociation phenotypes were observed for some changes affecting residues in the third and fourth conserved gp120 regions. These results suggest that hydrophobic regions at both ends of the gp120 glycoprotein contribute to noncovalent association with the gp41 transmembrane glycoprotein.  相似文献   

3.
Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this "inside-out" regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.  相似文献   

4.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

5.
The charged amino acids near or within the membrane-spanning region of the human immunodeficiency virus type 1 gp41 envelope glycoprotein were altered. Two mutants were defective for syncytium formation and virus replication even though levels of envelope glycoproteins on the cell or virion surface and CD4 binding were comparable to those of the wild-type proteins. Thus, in addition to anchoring the envelope glycoproteins, sequences proximal to the membrane-spanning gp41 region are important for the membrane fusion process.  相似文献   

6.
The envelope protein of human immunodeficiency virus type 1 HIV-1 undergoes proteolytic cleavage in the Golgi complex to produce subunits designated gp120 and gp41, which remain noncovalently associated. While gp41 has a well-characterized oligomeric structure, the maintenance of gp41-independent gp120 intersubunit contacts remains a contentious issue. Using recombinant vaccinia virus to achieve high-level expression of gp120 in mammalian cells combined with gel filtration analysis, we were able to isolate a discrete oligomeric form of gp120. Oligomerization of gp120 occurred intracellularly between 30 and 120 min after synthesis. Analysis by sedimentation equilibrium unequivocally identified the oligomeric species as a dimer. In order to identify the domains involved in the intersubunit contact, we expressed a series of gp120 proteins lacking various domains and assessed the effects of mutation on oligomeric structure. Deletion of the V1 or V3 loops had little effect on the relative amounts of monomer and dimer in comparison to wild-type gp120. In contrast, deletion of either all or part of the V2 loop drastically reduced dimer formation, indicating that this domain is required for intersubunit contact formation. Consistent with this, the V2 loop of the dimer was less accessible than that of the monomer to a specific monoclonal antibody. Previous studies have shown that while the V2 loop is not an absolute requirement for viral entry, the absence of this domain reduces viral resistance to neutralization by monoclonal antibodies or sera. We propose that the quaternary structure of gp120 may contribute to resistance to neutralization by limiting the exposure of conserved epitopes.  相似文献   

7.
The fusion kinetics of cells expressing the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein with CD4 target cells was continuously monitored by image-enhanced Nomarski differential interference contrast optics. The analysis of the videotape recordings showed that (i) cells made contact relatively rapidly (within minutes), in many cases by using microspikes to "touch" and adhere to adjoining cells; (ii) the adhered cells fused after a relatively long waiting period, which varied from 15 min to hours; (iii) the morphological changes after membrane fusion, which led to disappearance of the interface separating the two cells, were rapid (less than 1 min); and (iv) the process of syncytium formation involved subsequent fusion with other cells and not simultaneous fusion of many cells. To measure the kinetics of early stages of cell fusion, we used the recently developed very stable membrane-soluble dye, PKH26, which redistributes between labeled and unlabeled membranes after fusion but does not exchange spontaneously between membranes for prolonged periods. We found that photoactivation of this dye by illumination with green light inhibits fusion of cell membranes as indicated by the lack of dye transfer from the labeled HIV-1 envelope-expressing cells to unlabeled CD4 cells. The inhibitory effect was localized in space and time, which allowed us to develop a new assay for measuring the kinetics of membrane fusion by illuminating the cell mixture at different times after coculture. This assay has also been used to monitor the fusion kinetics of HIV-1 and recombinant vaccinia virus. The photoactivation of nonexchangeable membrane-soluble fluorescent dyes may be useful for development of new assays for measuring the kinetics of membrane fusion and could also be important in designing new antiviral approaches.  相似文献   

8.
The interaction between the gp120 and gp41 subunits of the human immunodeficiency virus envelope glycoprotein serves to stabilize the virion form of the complex and to transmit receptor-induced conformational changes in gp120 to trigger the membrane fusion activity of gp41. In this study, we used site-directed mutagenesis to identify amino acid residues in the central ectodomain of gp41 that contribute to the stability of the gp120-gp41 association. We identified alanine mutations at six positions, including four tryptophan residues, which result in mutant envelope glycoprotein complexes that fail to retain gp120 on the cell surface. These envelope glycoproteins readily shed their gp120 and are unable to mediate cell-cell fusion. These findings suggest an important role for the conserved bulky hydrophobic residues in stabilizing the gp120-gp41 complex.  相似文献   

9.
We have described an oligomeric gp140 envelope glycoprotein from human immunodeficiency virus type 1 that is stabilized by an intermolecular disulfide bond between gp120 and the gp41 ectodomain, termed SOS gp140 (J. M. Binley, R. W. Sanders, B. Clas, N. Schuelke, A. Master, Y. Guo, F. Kajumo, D. J. Anselma, P. J. Maddon, W. C. Olson, and J. P. Moore, J. Virol. 74:627-643, 2000). In this protein, the protease cleavage site between gp120 and gp41 is fully utilized. Here we report the characterization of gp140 variants that have deletions in the first, second, and/or third variable loop (V1, V2, and V3 loops). The SOS disulfide bond formed efficiently in gp140s containing a single loop deletion or a combination deletion of the V1 and V2 loops. However, deletion of all three variable loops prevented formation of the SOS disulfide bond. Some variable-loop-deleted gp140s were not fully processed to their gp120 and gp41 constituents even when the furin protease was cotransfected. The exposure of the gp120-gp41 cleavage site is probably affected in these proteins, even though the disabling change is in a region of gp120 distal from the cleavage site. Antigenic characterization of the variable-loop-deleted SOS gp140 proteins revealed that deletion of the variable loops uncovers cryptic, conserved neutralization epitopes near the coreceptor-binding site on gp120. These modified, disulfide-stabilized glycoproteins might be useful as immunogens.  相似文献   

10.
A neutralization-resistant variant of human immunodeficiency virus type 1 (HIV-1) that emerged during in vitro propagation of the virus in the presence of neutralizing serum from an infected individual has been described. A threonine-for-alanine substitution at position 582 in the gp41 transmembrane envelope glycoprotein of the variant virus was responsible for the neutralization-resistant phenotype (M.S. Reitz, Jr., C. Wilson, C. Naugle, R. C. Gallo, and M. Robert-Guroff, Cell 54:57-63, 1988). The mutant virus also exhibited reduced sensitivity to neutralization by 30% of HIV-1-positive sera that neutralized the parental virus, suggesting that a significant fraction of the neutralizing activity within these sera can be affected by the amino acid change in gp41 (C. Wilson, M. S. Reitz, Jr., K. Aldrich, P. J. Klasse, J. Blomberg, R. C. Gallo, and M. Robert-Guroff, J. Virol. 64:3240-3248, 1990). It is shown here that the change of alanine 582 to threonine specifically confers resistance to neutralizing by antibodies directed against both groups of discontinuous, conserved epitopes related to the CD4 binding site on the gp120 exterior envelope glycoprotein. Only minor differences in binding of these antibodies to wild-type and mutant envelope glycoproteins were observed. Thus, the antigenic structure of gp120 can be subtly affected by an amino acid change in gp41, with important consequences for sensitivity to neutralization.  相似文献   

11.
We have compared the expression of full-length gp160 envelope protein from human immunodeficiency virus type 1 with that of a deletion mutant lacking the N-terminal 31 amino acids of the mature protein (gp160 delta 32). The gp160 and gp160 delta 32 proteins are processed to yield gp41 and gp120 or gp120 delta 32, respectively. In contrast to full-length gp120, gp120 delta 32 failed to associate with gp41 at the cell surface, despite conformational integrity as judged by soluble CD4 binding. Thus, the N-terminal 31 amino acids of gp120, which contain hyperconserved sequences, are likely involved in forming a contact site for gp41.  相似文献   

12.
Three closely related molecular human immunodeficiency virus type 1 (HIV-1) clones, with differential neutralization phenotypes, were generated by cloning of an NcoI-BamHI envelope (env) gene fragment (HXB2R nucleotide positions 5221 to 8021) into the full-length HXB2 molecular clone of HIV-1 IIIB. These env gene fragments, containing the complete gp120 coding region and a major part of gp41, were obtained from three different biological clones derived from a chimpanzee-passaged HIV-1 IIIB isolate. Two of the viruses thus obtained (4.4 and 5.1) were strongly resistant to neutralization by infection-induced chimpanzee and human polyclonal antibodies and by HIV-1 IIIB V3-specific monoclonal antibodies and weakly resistant to soluble CD4 and a CD4-binding-site-specific monoclonal antibody. The third virus (6.8) was sensitive to neutralization by the same reagents. The V3 coding sequence and the gp120 amino acid residues important for the discontinuous neutralization epitope overlapping the CD4-binding site were completely conserved among the clones. However, the neutralization-resistant clones 4.4 and 5.1 differed from neutralization-sensitive clone 6.8 by two mutations in gp41. Exchange experiments confirmed that the 3' end of clone 6.8 (nucleotides 6806 to 8021; amino acids 346 to 752) conferred a neutralization-sensitive phenotype to both of the neutralization-resistant clones 4.4 and 5.1. From our study, we conclude that mutations in the extracellular portion of gp41 may affect neutralization sensitivity to gp120 antibodies.  相似文献   

13.
The transmembrane glycoprotein (gp41) of human immunodeficiency virus type 1 (HIV-1) has been implicated in the cytopathology observed during HIV infection. The first amino acids located at the amino terminus are involved in membrane fusion and syncytium formation, while sequences located at the carboxy terminus have been predicted to interact with membranes and modify membrane permeability. The HIV-1 gp41 gene has been cloned and expressed in Escherichia coli cells by using pET vectors to analyze changes in membrane permeability produced by this protein. This system is well suited for expressing toxic genes in an inducible manner and for analyzing the function of proteins that modify membrane permeability. gp41 enhances the permeability of the bacterial membrane to hygromycin B despite the low level of expression of this protein. To localize the regions of gp41 responsible for these effects, a number of fragments spanning different portions of gp41 were inducibly expressed in E. coli. Two regions of gp41 were shown to increase membrane permeability: one located at the carboxy terminus, where two highly amphipathic helices have been predicted, and another one corresponding to the membrane-spanning domain. Expression of the central region of gp41 comprising this domain was highly lytic for E. coli cells and increased membrane permeability to a number of compounds. These findings are discussed in the light of HIV-induced cytopathology and gp41 structure.  相似文献   

14.
Changes were introduced into conserved amino acids within the ectodomain of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane envelope glycoprotein. The effect of these changes on the structure and function of the HIV-1 envelope glycoproteins was examined. The gp41 glycoprotein contains an amino-terminal fusion peptide (residues 512 to 527) and a disulfide loop near the middle of the extracellular domain (residues 598 to 604). Mutations affecting the hydrophobic sequences between these two regions resulted in two phenotypes. Some changes in amino acids 528 to 562 resulted in a loss of the noncovalent association between gp41 and the gp120 exterior glycoprotein. Amino acid changes in other parts of the gp41 glycoprotein (residues 608 and 628) also resulted in subunit dissociation. Some changes affecting amino acids 568 to 596 resulted in envelope glycoproteins partially or completely defective in mediating membrane fusion. Syncytium formation was more sensitive than virus entry to these changes. Changes in several amino acids from 647 to 675 resulted in higher-than-wild-type syncytium-forming ability. One of these amino acid changes affecting tryptophan 666 resulted in escape from neutralization by an anti-gp41 human monoclonal antibody, 2F5. These results contribute to an understanding of the functional regions of the HIV-1 gp41 ectodomain.  相似文献   

15.
Lu M  Stoller MO  Wang S  Liu J  Fagan MB  Nunberg JH 《Journal of virology》2001,75(22):11146-11156
Membrane fusion by human immunodeficiency virus type 1 (HIV-1) is promoted by the refolding of the viral envelope glycoprotein into a fusion-active conformation. The structure of the gp41 ectodomain core in its fusion-active state is a trimer of hairpins in which three antiparallel carboxyl-terminal helices pack into hydrophobic grooves on the surface of an amino-terminal trimeric coiled coil. In an effort to identify amino acid residues in these grooves that are critical for gp41 activation, we have used alanine-scanning mutagenesis to investigate the importance of individual side chains in determining the biophysical properties of the gp41 core and the membrane fusion activity of the gp120-gp41 complex. Alanine substitutions at Leu-556, Leu-565, Val-570, Gly-572, and Arg-579 positions severely impaired membrane fusion activity in envelope glycoproteins that were for the most part normally expressed. Whereas alanine mutations at Leu-565 and Val-570 destabilized the trimer-of-hairpins structure, mutations at Gly-572 and Arg-579 led to the formation of a stable gp41 core. Our results suggest that the Leu-565 and Val-570 residues are important determinants of conserved packing interactions between the amino- and carboxyl-terminal helices of gp41. We propose that the high degree of sequence conservation at Gly-572 and Arg-579 may result from selective pressures imposed by prefusogenic conformations of the HIV-1 envelope glycoprotein. Further analysis of the gp41 activation process may elucidate targets for antiviral intervention.  相似文献   

16.
Hötzel I  Cheevers WP 《Journal of virology》2003,77(21):11578-11587
A sequence similarity between surface envelope glycoprotein (SU) gp135 of the lentiviruses maedi-visna virus and caprine arthritis-encephalitis virus (CAEV) and human immunodeficiency virus type 1 (HIV-1) gp120 has been described. The regions of sequence similarity are in the second and fifth conserved regions of gp120, and the similarity is highest in sequences coinciding with beta-strands 4 to 8 and 25, which are located in the most virion-proximal region of the gp120 inner domain. A subset of this structure, formed by gp120 beta-strands 4, 5, and 25, is conserved in most or all lentiviruses. Because of the orientation of gp120 on the virion, this highly conserved virion-proximal region of the gp120 core may interact with the transmembrane glycoprotein (TM) together with the amino and carboxy termini of full-length gp120. Therefore, interactions between SU and TM of lentiviruses may be structurally related. Here we tested whether the amino acid residues in the putative virion-proximal region of CAEV gp135 comprising putative beta-strands 4, 5, and 25, as well as its amino and carboxy termini, are important for stable interactions with TM. An amino acid change at gp135 position 119 or 521, located in the turn between putative beta-strands 4 and 5 and near beta-strand 25, respectively, specifically disrupted the epitope recognized by monoclonal antibody 29A. Thus, similar to the corresponding gp120 regions, these gp135 residues are located in close proximity to each other in the folded protein, supporting the hypothesis of a structural similarity between the gp120 virion-proximal inner domain and gp135. Amino acid changes in the amino- and carboxy-terminal and putative virion-proximal regions of gp135 increased gp135 shedding from the cell surface, indicating that these gp135 regions are involved in interactions with TM. Our results indicate structural and functional parallels between CAEV gp135 and HIV-1 gp120 that may be more broadly applicable to the SU of other lentiviruses.  相似文献   

17.
We investigated cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1 strain IIIB expressed on the surface of CHO cells. These cells formed syncytia when incubated together with CD4-positive human lymphoblastoid SupT1 cells or HeLa-CD4 cells but not when incubated with CD4-negative cell lines. A new assay for binding and fusion was developed by using fluorescent phospholipid analogs that were produced in SupT1 cells by metabolic incorporation of BODIPY-labeled fatty acids. Fusion occurred as early as 10 min after mixing of labeled SupT1 cells with unlabeled CHO-gp160 cells at 37 degrees C. When both the fluorescence assay and formation of syncytia were used, fusion of SupT1 and HeLa-CD4 cells with CHO-gp160 cells was observed only at temperatures above 25 degrees C, confirming recent observations (Y.-K. Fu, T.K. Hart, Z.L. Jonak, and P.J. Bugelski, J. Virol. 67:3818-3825, 1993). This temperature dependence was not observed with influenza virus-induced cell-cell fusion, which was quantitatively similar at both 20 and 37 degrees C, indicating that cell-cell fusion in general is not temperature dependent in this range. gp120-CD4-specific cell-cell binding was found over the entire 0 to 37 degrees C range but increased markedly above 25 degrees C. The enhanced binding and fusion were reduced by cytochalasins B and D. Binding of soluble gp120 to CD4-expressing cells was equivalent at 37 and 16 degrees C. Together, these data indicate that during gp120-gp41-induced syncytium formation, initial cell-cell binding is followed by a cytoskeleton-dependent increase in the number of gp120-CD4 complexes, leading to an increase in the avidity of cell-cell binding. The increased number of gp120-CD4 complexes is required for fusion, which suggests that the formation of a fusion complex consisting of multiple CD4 and gp120-gp41 molecules is a step in the fusion mechanism.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) oligomerization was investigated by coexpressing wild-type and truncated envelope glycoproteins to determine the minimum sequence required for mutant-wild-type hetero-oligomerization. The gp41 putative amphipathic alpha-helix, Leu-550 to Leu-582, was essential for hetero-oligomer formation. Alanine substitution of 9 of the 10 residues composing the gp41 amphipathic alpha-helix 4-3 hydrophobic repeat sequence was required to inhibit mutant-wild-type hetero-oligomerization and to render the envelope glycoprotein precursor, gp160, monomeric. This indicates that multiple hydrophobic contacts contribute to the stable envelope glycoprotein oligomeric structure. Single alanine substitutions within the hydrophobic repeat sequence did not affect gp160 oligomeric structure but abolished syncytium-forming function. Some mutations also diminished gp160 processing efficiency and the association between gp120 and gp41 in a position-dependent manner. These results indicate that the gp41 amphipathic alpha-helix 4-3 hydrophobic repeat sequence plays a central role in HIV-1 envelope glycoprotein oligomerization and fusion function.  相似文献   

19.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

20.
Monoclonal antibodies have been isolated from human immunodeficiency virus type 1 (HIV-1)-infected patients that recognize discontinuous epitopes on the gp120 envelope glycoprotein, that block gp120 interaction with the CD4 receptor, and that neutralize a variety of HIV-1 isolates. Using a panel of HIV-1 gp120 mutants, we identified amino acids important for precipitation of the gp120 glycoprotein by three different monoclonal antibodies with these properties. These amino acids are located within seven discontinuous, conserved regions of the gp120 glycoprotein, four of which overlap those regions previously shown to be important for CD4 recognition. The pattern of sensitivity to amino acid change in these seven regions differed for each antibody and also differed from that of the CD4 glycoprotein. These results indicate that the CD4 receptor and this group of broadly neutralizing antibodies recognize distinct but overlapping gp120 determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号