首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Presynaptic correlates of evoked neurotransmitter release include a rise in cytosolic free calcium level and the calcium-dependent liberation of unesterified arachidonic acid. It has been proposed that lipoxygenase metabolites produced from arachidonic acid may constitute an endogenous feedback system for the modulation of neurotransmitter release. The results of the present study are in agreement with this hypothesis. It was demonstrated that membrane depolarization evoked the release of endogenous glutamate from hippocampal mossy fiber synaptosomes, as well as the accumulation of intraterminal free calcium. The presence of 12-lipoxygenase products attenuated both the induced release of glutamate and the increase in calcium content, whereas 5- or 15-lipoxygenase metabolites were ineffective. A role for lipoxygenase products in the negative modulation of mossy fiber secretion processes was further indicated by the observations that low concentrations of the lipoxygenase inhibitor nordihydroguaiaretic acid (0.1-10 microM) potentiated the glutamate release and calcium accumulation induced by membrane depolarization. Therefore, we suggest that 12-lipoxygenase metabolites provide a presynaptic inhibitory signal that limits neurotransmitter release from hippocampal mossy fiber terminals.  相似文献   

2.
Abstract: Arachidonic acid and oleoylacetylglycerol enhance depolarization-evoked glutamate release from hippocampal mossy fiber nerve endings. It was proposed this is a Ca2+-dependent effect and that protein kinase C is involved. Here we report that arachidonic acid and oleoylacetylglycerol synergistically potentiate the glutamate release induced by the Ca2+ ionophore ionomycin. The Ca2+ dependence of this effect was established, as removal of Ca2+ eliminated evoked release and the lipid-dependent potentiation. Also, Ca2+ channel blockers attenuated ionomycin- and KCI-evoked exocytosis, as well as the facilitating effects of the lipid mediators. Although facilitation required Ca2+, it may not involve an enhancement of evoked Ca2+ accumulation, because ionomycin-dependent glutamate release was potentiated under conditions that did not increase ionomycin-induced Ca2+ accumulation. Also, the facilitation may not depend on inhibition of K+ efflux, because enhanced release was observed in the presence of increasing concentrations of 4-aminopyridine and diazoxide did not reduce the lipid-dependent potentiation of exocytosis. In contrast, disruption of cytoskeleton organization with cytochalasin D occluded the lipid-dependent facilitations of both KCI- and ionomycin-evoked glutamate release. In addition, arachidonic acid plus glutamatergic or cholinergic agonists enhanced glutamate release, whereas a role for protein kinase C in the potentiation of exocytosis was substantiated using kinase inhibitors. It appears that the lipid-dependent facilitation of glutamate release from mossy fiber nerve endings requires Ca2+ and involves multiple presynaptic effects, some of which depend on protein kinase C.  相似文献   

3.
An enhancement of glutamate release from hippocampal neurons has been implicated in long-term potentiation, which is thought to be a cellular correlate of learning and memory. This phenomenom appears to be involved the activation of protein kinase C and lipid second messengers have been implicated in this process. The purpose of this study was to examine how lipid-derived second messengers, which are known to potentiate glutamate release, influence the accumulation of intraterminal free Ca2+, since exocytosis requires Ca2+ and a potentiation of Ca2+ accumulation may provide a molecular mechanism for enhancing glutamate release. The activation of protein kinase C with phorbol esters potentiates the depolarization-evoked release of glutamate from mossy fiber and other hippocampal nerve terminals. Here we show that the activation of protein kinase C also enhances evoked presynaptic Ca2+ accumulation and this effect is attenuated by the protein kinase C inhibitor staurosporine. In addition, the protein kinase C-dependent increase in evoked Ca2+ accumulation was reduced by inhibitors of phospholipase A2 and voltage-sensitive Ca2+ channels, as well as by a lipoxygenase product of arachidonic acid metabolism. That some of the effects of protein kinase C activation were mediated through phospholipase A2 was also indicated by the ability of staurosporine to reduce the Ca2+ accumulation induced by arachidonic acid or the phospholipase A2 activator melittin. Similarly, the synergistic facilitation of evoked Ca2+ accumulation induced by a combination of arachidonic acid and diacylglycerol analogs was attenuated by staurosporine. We suggest, therefore, that the protein kinase C-dependent potentiation of evoked glutamate release is reflected by increases in presynaptic Ca2+ and that the lipid second messengers play a central role in this enhancement of chemical transmission processes.  相似文献   

4.
Using a hippocampal subcellular fraction enriched in mossy fiber synaptosomes, evidence was obtained indicating that adenosine derived from a presynaptic pool of ATP may modulate the release of prodynorphin-derived peptides. and glutamic acid from mossy fiber terminals. Synaptosomal ATP was released in a Ca2+-dependent manner by K+-induced depolarization. The rapid hydrolysis of extracellular [14C]ATP in the presence of intact mossy fiber synaptosomes resulted in the production of [14C]adenosine. Micromolar concentrations of a stable adenosine analogue, 2-chloroadenosine, inhibited the K+-stimulated release of both dynorphin B and dynorphin A(1-8). 2-Chloroadenosine failed to suppress the evoked release of glutamic acid, measured in these same superfusates, unless the mossy fiber synaptosomes were pretreated with D-aspartic acid to deplete the cytosolic, Ca2+-independent, pool of this acidic amino acid. In synaptosomes pretreated in this manner, release of the remaining Ca2+-dependent pool of glutamic acid was significantly inhibited by NiCl2, 2-chloroadenosine, 5'-N-ethylcarboxamidoadenosine, cyclohexyladenosine, and R(-)-N6(2-phenylisopropyl)adenosine, but not by ATP. 2-Chloroadenosine-induced inhibition was reversed when the external CaCl2 concentration was raised from 1.8 mM to 6 mM. 8-Phenyltheophylline, an adenosine receptor antagonist, effectively blocked the inhibitory effects of 2-chloroadenosine on mossy fiber synaptosomes and significantly enhanced the K+-evoked release of both glutamic acid and dynorphin A(1-8) when added alone to the superfusion medium. These results support the proposition that depolarized hippocampal mossy fiber synaptosomes release endogenous ATP and are capable of forming adenosine from extracellular ATP, and that endogenous adenosine may act at a presynaptic site to inhibit the further release of glutamic acid and the prodynorphin-derived peptides.  相似文献   

5.
We have studied factors controlling the release of endogenous ascorbate from synaptosomes prepared from various regions of the rat brain. Ascorbate was spontaneously released from synaptosomes, and this efflux could be enhanced by incubation at 37°C. A further additional ascorbate release could be induced by potassium depolarization or, in striatal, hippocampal and cortical synaptosomes, by incubation with the amino acid glutamate. Spontaneous, depolarization and glutamate-evoked ascorbate release were shown to occur by separate mechanisms. Glutamate-evoked ascorbate release occurred by a heteroexchange mechanism. In cerebellar synaptosomes there was no evidence for such heteroexchange; however, in synaptosomes of this brain region kainic acid induced ascorbate release, probably by acting on excitatory amino acid receptors. The results are discussed in relation to the changes in extracellular brain ascorbate occurring in vivo.  相似文献   

6.
The action of arachidonic acid on glutamate release in rat cerebrocortical synaptosomes was investigated. The Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine (4-AP) was inhibited by arachidonic acid (0.5-10 microM), but the KCl-evoked release was not modified. The Ca(2+)-independent release of glutamate was insensitive to low concentrations of arachidonic acid, but higher concentrations of this free fatty acid (30 microM) induced a slow efflux of cytoplasmic glutamate. The decrease in the Ca(2+)-dependent release of glutamate by arachidonic acid was consistent with a reduction in both the depolarization and the subsequent rise in the cytoplasmic free Ca2+ concentration induced by 4-AP in the nerve terminal. The inhibitory action by arachidonic acid observed in glutamate release was reversed in the presence of the K(+)-channel blocker tetraethylammonium.  相似文献   

7.
By using both synaptosomes and cultured astrocytes from rat cerebral cortex, we have investigated the inhibitory action of arachidonic acid on the high-affinity glutamate uptake systems, focusing on the possible physiological significance of this mechanism. Application of arachidonic acid (1-100 microM) to either preparation leads to fast (within 30 s) and largely reversible reduction in the uptake rate. When either melittin (0.2-1 microgram/ml), a phospholipase A2 activator, or thimerosal (50-200 microM), which inhibits fatty acid reacylation in phospholipids, is applied to astrocytes, both an enhancement in extracellular free arachidonate and a reduction in glutamate uptake are seen. The two effects display similar dose dependency and time course. In particular, 10% uptake inhibition correlates with 30% elevation in free arachidonate, whereas inhibition greater than or equal to 60% is paralleled by threefold stimulation of arachidonate release. In the presence of albumin (1-10 mg/ml), a free fatty acid-binding protein, inhibition by either melittin, thimerosal, or arachidonic acid is prevented and an enhancement of glutamate uptake above the control levels is observed. Our data show that neuronal and glial glutamate transport systems are highly sensitive to changes in extracellular free arachidonate levels and suggest that uptake inhibition may be a relevant mechanism in the action of arachidonic acid at glutamatergic synapses.  相似文献   

8.
Depolarization-evoked increases in intraterminal free Ca2+ are required for the induction of neurotransmitter release from nerve terminals. Although the mechanisms that regulate the voltage-induced accumulation of presynaptic Ca2+ remain obscure, there is evidence that the phospholipase-dependent accumulation of arachidonic acid, or its metabolites, may be involved. Therefore, fura-2 loaded hippocampal mossy fiber nerve endings were used to investigate the relationships between membrane depolarization, lipid metabolism and presynaptic Ca2+ availability. It was observed that depolarization of the nerve terminals with KCl induced an increase in intraterminal free calcium that was inhibited more than 90% by a combination of voltage-sensitive Ca2+ channel blockers. In addition, the K+-dependent effects on Ca2+ concentrations were attenuated in the presence of phospholipase A2 inhibitors, but were mimicked by the phospholipase A2 activator melittin and exogenous arachidonic acid. Both the melittin- and arachidonic acid-induced increases in presynaptic Ca2+ were reduced by voltage-sensitive Ca2+ channel blockers. The stimulatory effects of arachidonic acid appeared to be independent of its further metabolism to prostaglandins. In fact, inhibition of either cyclooxygenase or lipoxygenase pathways resulted in a potentiation of the depolarization-evoked increase in intraterminal free Ca2+. From these results, we propose that some portion of the depolarization-evoked increase in intraterminal free calcium depends on the activation of phospholipase A2 and the subsequent accumulation of unesterified arachidonic acid.  相似文献   

9.
d-aspartate was used in the present study to partially deplete the cytosolic pool of glutamate, which is released independent of extracellular Ca2+, prior to measuring the K+-evoked release of this endogenous acidic amino acid from rat hippocampal mossy fiber synaptosomes. This pretreatment is known to be an effective method for substantially reducing the Ca2+-independent component of glutamate release. The rate of glutamate efflux is dependent on the concentration of sodium ions in the external medium and can be stimulated by exposure of hippocampal mossy fiber synaptosomes to externald-aspartate (50 M). Following the partial displacement of this cytosolic pool of glutamate withd-aspartate, the K+-evoked release of the residual, presumably vesicular, pool of endogenous glutamate has a strict requirement for external calcium and is highly dependent on the extent to which depolarization elevates the level of free cytosolic calcium. It is concluded that the protocol described in this study for the displacement of cytosolic glutamate withd-aspartate provides a useful alternative method of controlling for the Ca2+-independent component of glutamate release in synaptosomal preparations.Abbreviations used Ca calcium - Ca2+ free calcium - EGTA (ethylene-dioxy)diethylenedinitrilotetraacetic acid - KBM Krebs-bicarbonate medium The animals involved in this study were procured, maintained and used in accordance with the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources, National Research Council.  相似文献   

10.
Abstract: The effects of arachidonic acid and phorbol esters in the Ca2+-dependent release of glutamate evoked by 4-aminopyridine (4-AP) in rat cerebrocortical synaptosomes were studied. In the absence of arachidonic acid, high concentrations (500 n M ) of 4β-phorbol dibutyrate (4β-PDBu) were required to enhance the release of glutamate. However, in the presence of arachidonic acid, low concentrations of 4β-PDBu (1–50 n M ) were effective in potentiating glutamate exocytosis. This potentiation of glutamate release by phorbol esters was not observed with the methyl ester of arachidonic acid, which does not activate protein kinase C. Moreover, pretreatment of synaptosomes with the protein kinase inhibitor staurosporine also prevented the stimulatory effect by arachidonic acid and phorbol esters. These results suggest that the activation of protein kinase C by both arachidonic acid and phorbol esters may play a role in the potentiation of glutamate exocytosis.  相似文献   

11.
The effect of aspirin on glutamate release from isolated nerve terminals (synaptosomes) from rat hippocampus was examined. The Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine (4AP) was facilitated by aspirin in a concentration-dependent manner, but the 4AP-evoked Ca(2+)-independent release was not modified. Also, aspirin-mediated facilitation of glutamate release was completely inhibited by bafilomycin A1, which depletes vesicle content by inhibiting the synaptic vesicle H(+)-ATPase that drives glutamate uptake, not by l-trans-pyrrolidine-2,4-dicarboxylic acid (l-trans-PDC), a excitatory amino acid (EAA) transporter inhibitor, suggesting that the facilitation of glutamate release produced by aspirin originates from synaptic vesicle exocytosis rather than reversal of the plasma membrane glutamate transporter. In addition, aspirin did not alter either 4AP-evoked depolarization of the synaptosomal plasma membrane potential or Ca(2+) ionophore ionomycin-induced glutamate release, but significantly increased in 4AP-evoked Ca(2+) influx. A possible effect of aspirin on synaptosomal Ca(2+) channels was confirmed in experiments where synaptosomes pretreated with a combination of the N- and P/Q-type Ca(2+) channel blockers, which abolished the aspirin-mediated facilitation of glutamate release. The facilitatory action by aspirin observed in glutamate release was mimicked and occluded by arachidonic acid (AA) and eicosatetraynoic acid (ETYA), an analogue of AA that mimics the effect of AA but cannot be metabolized. Furthermore, this aspirin-mediated facilitation of glutamate release may depend on activation of protein kinase C (PKC), because PKC activator and PKC inhibitor, respectively, superseding or suppressing the facilitatory effect of aspirin. Together, these results suggest that aspirin exerts their presynaptic facilitatory effect, likely through AA directly to induce the activation of PKC, which subsequently enhances the Ca(2+) influx through voltage-dependent N- and P/Q-type Ca(2+) channels to cause an increase in evoked glutamate release from rat hippocampal nerve terminals.  相似文献   

12.
In this report, two changes that occur in the presynaptic terminal following induction of long-term potentiation in the dentate gyrus are examined, and the results demonstrate that the same changes are stimulated by the putative retrograde messenger arachidonic acid. First, there is an increase in the concentration of intracellular calcium in synaptosomes prepared from potentiated tissue compared with control tissue. This effect on intracellular calcium concentration was mimicked in control tissue by treatment of synaptosomes with either arachidonic acid or inositol 1,4,5-trisphosphate in a dose-dependent but nonadditive manner. Second, there is an increase in phosphoinositide turnover in synaptosomes prepared from potentiated tissue compared with control tissue, and this change can also be mimicked in control tissue by exposure of synaptosomes to arachidonic acid. These findings are consistent with the hypothesis that the increase in glutamate release associated with long-term potentiation may be stimulated by arachidonic acid, as a result of an increase in intrasynaptosomal calcium concentration, perhaps occurring as a result of arachidonate-stimulated phosphoinositide metabolism.  相似文献   

13.
In rat cerebrocortical synaptosomes, the addition of 4 beta-phorbol dibutyrate (4 beta-PDBu) and arachidonic acid enhances and decreases, respectively, the glutamate release evoked by 4-aminopyridine. Pretreatment of synaptosomes with 12-O-tetradecanoylphorbol 13-acetate (TPA) or pre-incubation with staurosporine, prevent the stimulatory effect of 4 beta-PDBu, but are without effect on the inhibitory action of arachidonic acid. Moreover, methyl arachidonate, which is not effective as a PKC activator, also strongly inhibits glutamate exocytosis. These results suggest that PKC is not involved in the inhibition of glutamate release by arachidonic acid.  相似文献   

14.
The release of endogenous amino acids from depolarized rat hippocampal mossy fiber synaptosomes was investigated to assess the possible role(s) of glutamate and aspartate in mediating the excitatory mossy fiber synaptic input. The relative proportions of prodynorphin-derived peptides concomitantly released with amino acids were also determined to further characterize the biochemical basis for mossy fiber synaptic transmission. Of the 18 amino acids shown to be present in superfusate fractions by liquid chromatographic analysis, only glutamate was released at a significantly enhanced rate from K+-stimulated (35 mM KCl) mossy fiber nerve endings. The rates of glutamate and aspartate release were increased by 360±27% and 54±12% over baseline respectively. However, the K+-evoked release of glutamate was substantially more Ca2+-dependent (80%) than was the release of aspartate (49%). The veratridine (45 M)-evoked release of both acidic amino acids was entirely blocked by 1 M tetrodotoxin. Depolarization (45 mM KCl) also stimulated the release of the four prodynorphin (Dyn) products examined, in a rank order of Dyn B >> Dyn A(1–17) > Dyn A(1–8) >> Dyn A(1–13), with Dyn B efflux increasing by more than 5-fold over baseline values. These results suggest that the predominant excitatory amino acid in hippocampal mossy fiber synaptic transmission may be glutamate and that this synaptic input may be modulated by at least four different products of prodynorphin processing.The animals involved in this study were procured, maintained and used in accordance with the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources—National Research Council.  相似文献   

15.
J. Neurochem. (2012) 122, 891-899. ABSTRACT: Presynaptic kainate receptors (KARs) modulate the release of glutamate at synapses established between mossy fibers (MF) and CA3 pyramidal cells in the hippocampus. The activation of KAR by low, nanomolar, kainate concentrations facilitates glutamate release. KAR-mediated facilitation of glutamate release involves the activation of an adenylate cyclase/cyclic adenosine monophosphate/protein kinase A cascade at MF-CA3 synapses. Here, we studied the mechanisms by which KAR activation produces this facilitation of glutamate release in slices and synaptosomes. We find that the facilitation of glutamate release mediated by KAR activation requires an increase in Ca(2+) levels in the cytosol and the formation of a Ca(2+) -calmodulin complex to activate adenylate cyclase. The increase in cytosolic Ca(2+) underpinning this modulation is achieved, both, by Ca(2+) entering via Ca(2+) -permeable KARs and, by the mobilization of intraterminal Ca(2+) stores. Finally, we find that, congruent with the Ca(2+) -calmodulin support of KAR-mediated facilitation of glutamate release, induction of long-term potentiation at MF-CA3 synapses has an obligate requirement for Ca(2+) -calmodulin activity.  相似文献   

16.
Walker MC  Ruiz A  Kullmann DM 《Neuron》2001,29(3):703-715
Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc. In addition, mossy fiber terminals show intense immunoreactivity for the inhibitory neurotransmitter GABA. Fast inhibitory transmission at mossy fiber synapses, however, has not previously been reported. Here, we show that electrical or chemical stimuli that recruit dentate granule cells elicit monosynaptic GABA(A) receptor-mediated synaptic signals in CA3 pyramidal neurons. These inhibitory signals satisfy the criteria that distinguish mossy fiber-CA3 synapses: high sensitivity to metabotropic glutamate receptor agonists, facilitation during repetitive stimulation, and NMDA receptor-independent long-term potentiation. GABAergic transmission from the dentate gyrus to CA3 has major implications not only for information flow into the hippocampus but also for developmental and pathological processes involving the hippocampus.  相似文献   

17.
Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.

This study uses several high-resolution imaging techniques to investigate the structural correlates of presynaptic potentiation at hippocampal mossy fiber boutons, observing an increase in release sites and in release synchronicity accompanied by synaptic vesicle dispersion in the terminal and accumulation at release sites, but no modulation of the distance between calcium channel and release sites.  相似文献   

18.
The antioxidant alpha-lipoic acid has been reported to prevent and reverse age-related impairments in learning and memory. However, it is unclear how alpha-lipoic acid improves cognitive function. In this study, the effect of alpha-lipoic acid on the release of endogenous glutamate from rat cerebrocortical nerve terminals (synaptosomes) was examined. We found that alpha-lipoic acid potently facilitated 4-aminopyridine (4AP)-evoked glutamate release, and this release facilitation results from an enhancement of vesicular exocytosis and not from an increase of non-vesicular release. Examination of the effect of alpha-lipoic acid on cytosolic [Ca(2+)] revealed that the facilitation of glutamate release was associated with an increase in voltage-dependent Ca(2+) influx. Consistent with this, alpha-lipoic acid-mediated facilitation of glutamate release was completely prevented in synaptosomes pretreated with a wide spectrum blocker of the N- and P/Q-type Ca(2+) channels, omega-conotoxin MVIIC. The facilitatory effect of alpha-lipoic acid on Ca(2+) influx was not due to an increase of synaptosomal excitability because alpha-lipoic acid did not alter the 4AP-evoked depolarization of the synaptosomal plasma membrane potential. In addition, both ionomycin and hypertonic sucrose-induced glutamate release were enhanced by alpha-lipoic acid. Furthermore, disruption of cytoskeleton organization with cytochalasin D occluded the facilitatory effect of alpha-lipoic acid on 4AP or ionomycin-evoked glutamate release. These results suggest that the antioxidant alpha-lipoic acid enhances the Ca(2+) entry through presynaptic N- and P/Q-type Ca(2+) channels as well as the vesicular release machinery to cause an increase in evoked glutamate release from rat cerebrocortical synaptosomes. Also, activation of PKA and PKC may underlie, at least in part, the alpha-lipoic acid-mediated facilitation of glutamate release observed here as alpha-lipoic acid-enhanced 4AP and ionomycin-evoked glutamate release were significantly attenuated by PKA and PKC inhibitors. This finding may provide some information regarding the mechanism of action of alpha-lipoic acid in the central nervous system (CNS).  相似文献   

19.
Kainate receptors (KARs) are members of the glutamate receptor family, which also includes two other ionotropic subtypes, i.e. NMDA- and AMPA-type receptors, and types I, II and III metabotropic glutamate receptors. KARs mediate synaptic transmission postynaptically through their ionotropic capacity, while presynaptically, they modulate the release of both GABA and glutamate through operationally diverse modus operandi. At hippocampal mossy fiber (MF)-CA3 synapses, KARs have a biphasic effect on glutamate release, such that, depending on the extent of their activation, a facilitation or depression of glutamate release can be observed. This modulation is posited to contribute to important roles of KARs in short- and long-term plasticity. Elucidation of the modes of action of KARs in their depression and facilitation of glutamate release is beginning to gather impetus. Here we will focus on the cellular mechanisms involved in the modulation of glutamate release by presynaptic KAR activation at MF-CA3 synapses, a field that has seen significant progress in recent years.  相似文献   

20.
Dysbindin-1 (dystrobrevin-binding protein 1, DTNBP1) is one of the promising schizophrenia susceptibility genes. Dysbindin protein is abundantly expressed in synaptic regions of the hippocampus, including the terminal field of the mossy fibers, and this hippocampal expression of dysbindin is strongly reduced in patients with schizophrenia. In the present study, we examined the functional role of dysbindin in hippocampal mossy fiber-CA3 synaptic transmission and its modulation using the sandy mouse, a spontaneous mutant with deletion in the dysbindin gene. Electrophysiological recordings were made in hippocampal slices prepared from adult male sandy mice and their wild-type littermates. Basic properties of the mossy fiber synaptic transmission in the mutant mice were generally normal except for slightly reduced frequency facilitation. Serotonin and dopamine, two major neuromodulators implicated in the pathophysiology of schizophrenia, can potentiate mossy fiber synaptic transmission probably via an increase in cAMP levels. Synaptic potentiation induced by serotonin and dopamine was very variable in magnitude in the mutant mice, with some mice showing prominent enhancement as compared with the wild-type mice. In addition, the magnitude of potentiation induced by these monoamines significantly correlated with each other in the mutant mice, indicating that a subpopulation of sandy mice has marked hypersensitivity to both serotonin and dopamine. While direct activation of the cAMP cascade by forskolin induced robust synaptic potentiation in both wild-type and mutant mice, this forskolin-induced potentaition correlated in magnitude with the serotonin-induced potentiation only in the mutant mice, suggesting a possible change in coupling of receptor activation to downstream signaling. These results suggest that the dysbindin deficiency could be an essential genetic factor that causes synaptic hypersensitivity to dopamine and serotonin. The altered monoaminergic modulation at the mossy fiber synapse could be a candidate pathophysiological basis for impairment of hippocampus-dependent brain functions in schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号