首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In previous studies examining the potential role of pp60c-src in cellular proliferation, we demonstrated that C3H10T1/2 murine embryo fibroblasts overexpressing transfected chicken genomic c-src displayed an epidermal growth factor (EGF)-induced mitogenic response which was 200 to 500% of the response exhibited by parental control cells (Luttrell et al., Mol. Cell. Biol. 8:497-501, 1988). In order to examine specific structural and functional requirements for pp60c-src in this event, 10T1/2 cells were transfected with chicken c-src genes encoding pp60c-src deficient in tyrosine kinase activity (pm430), myristylation, (pm2A), or a domain hypothesized to modulate the interaction with substrates or regulatory components (dl155). Neomycin-resistant clonal cell lines overexpressing each of the mutated c-src genes were assayed for EGF mitogenic responsiveness by measuring [3H]thymidine incorporation into acid-precipitable material or into labeled nuclei. The results were compared with those obtained with lines overexpressing the cDNA form of wild-type (wt) c-src or control cells transfected with the neomycin resistance gene only. As previously described for cells overexpressing wt genomic c-src (Luttrell et al., 1988), clones overexpressing wt cDNA c-src also exhibited enhanced EGF mitogenic responses ranging from approximately 300 to 400% of the control cell response. In contrast, clones overexpressing unmyristylated, modulation-defective, or kinase-deficient c-src not only failed to support an augmented response to EGF but also exhibited EGF responses lower than that of the control cells. Furthermore, there were no significant differences in the mitogenic responses to 10% fetal calf serum among any of the cells tested. These results indicate that pp60(c-scr) can potentiate mitogenic signaling generated by EGF but not all growth factors. This potentiation requires the utilization of pp60(c-scr) myristylation, and modulatory and tyrosine kinase domains and can me mediated by cDNA-encoded as well as by genome-encoded wt pp60(c-scr).  相似文献   

2.
The NBT-II rat carcinoma cell line exhibits two mutually exclusive responses to FGF-1 and EGF, entering mitosis at cell confluency while undergoing an epithelium-to-mesenchyme transition (EMT) when cultured at subconfluency. EMT is characterized by acquisition of cell motility, modifications of cell morphology, and cell dissociation correlating with the loss of desmosomes from cellular cortex. The pleiotropic effects of EGF and FGF-1 on NBT-II cells suggest that multiple signaling pathways may be activated. We demonstrate here that growth factor activation is linked to at least two intracellular signaling pathways. One pathway leading to EMT involves an early and sustained stimulation of pp60c-src kinase activity, which is not observed during the growth factor-induced entry into the cell cycle. Overexpression of normal c-src causes a subpopulation of cells to undergo spontaneous EMT and sensitizes the rest of the population to the scattering activity of EGF and FGF-1 without affecting their mitogenic responsiveness. Addition of cholera toxin, a cAMP-elevating agent, severely perturbs growth factor induction of EMT without altering pp60c-src activation, therefore demonstrating that cAMP blockade takes place downstream or independently of pp60c-src. On the other hand, overexpression of a mutated, constitutively activated form of pp60c-src does not block cell dispersion while strongly inhibiting growth factor-induced entry into cell division. Moreover, stable transfection of a dominant negative mutant of c-src inhibits the scattering response without affecting mitogenesis induced by the growth factors. Altogether, these results suggest a role for pp60c-src in epithelial cell scattering and indicate that pp60c-src might contribute unequally to the two separate biological activities engendered by a single signal.  相似文献   

3.
Lipocortin I is a 39-kilodalton membrane-associated protein that in A431 cells is phosphorylated on tyrosine in response to epidermal growth factor (EGF). We have used recombinant human lipocortin I as a substrate for several protein kinases and identified phosphorylated residues by a combination of peptide mapping and sequence analysis. Lipocortin I was phosphorylated near the amino terminus at Tyr-21 by recombinant pp60c-src. The same tyrosine residue was phosphorylated by polyoma middle T/pp60c-src complex, by recombinant pp50v-abl, and with A431 cell membranes by the EGF receptor/kinase. The primary site of phosphorylation by protein kinase C was also near the amino terminus at Ser-27. The major site of phosphorylation by adenosine cyclic 3',5'-phosphate dependent protein kinase was on the carboxy-terminal half of the molecule at Thr-216. These sites are compared to the phosphorylation sites previously located in the structurally related protein lipocortin II.  相似文献   

4.
Localization of pp60c-src in growth cone of PC12 cell   总被引:2,自引:0,他引:2  
By immunocytochemical and biochemical techniques, we observed the localization and expression of pp60c-src in nerve growth factor (NGF)-treated PC12 cells. Immunostaining of pp60c-src is detected in the neuronal soma and the tips of neurites (growth cones). Immunofluorescence in the neurites is less significant. High-resolution microscopy reveals that the location of pp60c-src in growth cone is in good agreement with the adhesive site of growth cone to the substratum. The pp60c-src kinase activity and the pp60c-src protein level increase 3.1- to 3.5-fold and 2.0-fold during differentiation of PC12 cells, respectively. The pp60c-src levels in the neurite fraction are also higher than those in the neuronal soma fraction. These results support the immunocytochemical finding that pp60c-src is localized in growth cones of differentiated PC12 cells. Furthermore, we discuss the possible role of pp60c-src in growth cone.  相似文献   

5.
Expression of antisense c-src RNAs in rat and mouse fibroblasts had a dramatic effect on the function of polyoma virus middle T (mT). Antisense c-src RNA decreased the amount of mT:pp60c-src complexes in de novo virus-infected cells and prevented expression of the transformed phenotype in rat F111 cells. Expression of antisense c-src RNA in infected NIH3T3 cells also reduced the formation of mT:pp60c-src complexes but did not affect the ability of polyoma virus to carry out a productive infection. Further analysis of the effects of antisense c-src RNA in uninfected cells revealed that pp60c-src is required for cell growth. When pp60c-src synthesis was reduced, F111 cells stopped proliferating and showed decreased S6 phosphorylation in response to serum. However, F111 cells expressing reduced pp60c-src could be efficiently transformed by v-rasHa, even in the presence of low serum. Thus, pp60c-src appears to function as a component of a signal transduction pathway which regulates cell proliferation in response to serum.  相似文献   

6.
7.
We characterize two independent variant cellular clones which arose following in vitro passage of polyomavirus middle-T-antigen (MTAg)-transformed FR3T3 cells expressing RNA complementary to c-src mRNA. These clones were initially flat and underwent morphologic transformation at a high frequency to a phenotype indistinguishable from that of parental MTAg-transformed FR3T3 cells. Biochemical analysis of the flat clones prior to phenotypic conversion revealed that these cells synthesized little detectable pp60c-src and had correspondingly low levels of pp60c-src protein kinase activity and MTAg-associated protein kinase activity. The flat cell clones did not possess detectable focus-forming activity, were not capable of detectable anchorage-independent growth, and had saturation densities and doubling times below those normally observed for FR3T3 cells. Following conversion of the flat clones to a shape resembling that of typical MTAg-transformed cells, the abundance of pp60c-src, pp60c-src kinase activity, and MTAg-associated in vitro protein kinase activity were all restored to the levels found in the parental MTAg transformants. These cells had growth rates, focus-forming activities, anchorage-independent growth rates, and saturation densities similar to those of the parental MTAg-transformed rat cells. These data provide additional evidence that maintenance of a transformed phenotype by polyomavirus MTAg in established rat cell lines depends, at least in part, on a minimal threshold level of pp60c-src.  相似文献   

8.
The product of the c-src proto-oncogene, pp60c-src, is phosphorylated at Ser-17 by cyclic AMP-dependent protein kinase A and at Ser-12 by calcium-phospholipid-dependent protein kinase C (when stimulated by 12-O-tetradecanoyl phorbol acetate). We tested the effects of Ser----Ala and Ser----Glu mutations at these sites in pp60c-src and in pp60c-src(F527) (a mutant whose transforming activities are enhanced by Tyr-527----Phe mutation) by transfecting single-, double-, and triple-mutant src expression plasmids into NIH 3T3 cells. Tryptic phosphopeptide analyses of the mutant proteins confirmed prior biochemical identifications of the phosphorylation sites and showed that neither separate nor coordinate mutations at Ser-12 and Ser-17 affected Tyr-416, Tyr-527, or Ser-48 phosphorylation or prevented mitosis-specific phosphorylations of either pp60c-src or pp60c-src(F527). Ser-12 mutation did not affect phosphorylation of the Ser-17-containing peptide, but mutation of Ser-17 significantly increased phosphorylation at Ser-12. Specific kinase activities (both with and without in vivo 12-O-tetradecanoyl phorbol acetate treatment) and the abilities of pp60c-src and pp60c-src(F527) to induce foci, transformed morphologies, and anchorage-independent growth were unaffected by any of the serine mutations. Thus, pp60c-src transforming activity in NIH 3T3 cells is relatively insensitive to phosphorylation at these sites, but there is a suggestion that Ser-17 phosphorylation may have a subtle regulatory effect.  相似文献   

9.
Elevated levels of pp60c-src tyrosine kinase activity have been implicated in both tumorigenesis and cell differentiation. We have found a 2- to 4-fold elevation in pp60c-src specific activity in certain human melanoma cell lines compared to human foreskin fibroblasts. This activation of pp60c-src did not appear to be related to melanoma tumor progression, because when normal human epidermal melanocytes were examined, it was found that they contained pp60c-src having a 7-fold elevation in specific activity compared to pp60c-src from human fibroblasts. It was determined that pp60c-src from melanocytes was not the neuronal form, pp60c-src+. Melanocyte pp60c-src exhibited a reduced level of phosphorylation on its carboxyl-terminal regulatory site, tyrosine 530, which might be responsible for its elevated specific activity. These results suggest that, in melanocytes, regulation of tyrosine 530 phosphorylation-dephosphorylation favors activation of pp60c-src. This activation may be involved in the growth, differentiation, or function of human melanocytes.  相似文献   

10.
AtT20 cells express modified forms of pp60c-src   总被引:2,自引:0,他引:2  
We have compared the properties of pp60c-src from the mouse pituitary tumor cell line, AtT20, and from mouse fibroblasts. In vitro, pp60c-src phosphotransferase activity from AtT20 cells is 2- to 3-fold that of mouse NIH 3T3 fibroblast pp60c-src. In analyzing the reason for this elevation in specific activity, we found that pp60c-src from AtT20 cells differs structurally in at least three ways from pp60c-src in fibroblasts. First, AtT20 cells and primary rat anterior pituitary cells express low levels of the neuronal form of pp60c-src. Second, pp60c-src from AtT20 cells is phosphorylated at two additional N-terminal serine residues. Last, AtT20 pp60c-src is phosphorylated to a lower overall stoichiometry.  相似文献   

11.
Previously we demonstrated that C3H10T1/2 murine fibroblasts overexpressing avian c-src exhibit elevated levels of cyclic AMP (cAMP) in response to beta-adrenergic agonists compared with that in control cells and that this enhanced response requires c-src kinase activity (W. A. Bushman, L. K. Wilson, D. K. Luttrell, J. S. Moyers, and S. J. Parsons, Proc. Natl. Acad. Sci. USA 87:7462-7466, 1990). However, it is not yet known which components of the beta-adrenergic receptor pathway, if any, interact with pp60c-src. It has recently been shown that immune complexes of pp60c-src phosphorylate recombinant G alpha proteins in vitro to stoichiometric levels, resulting in alterations of GTP binding and GTPase activity (W. P. Hausdorff, J. A. Pitcher, D. K. Luttrell, M. E. Linder, H. Kurose, S. J. Parsons, M. G. Caron, and R. J. Lefkowitz, Proc. Natl. Acad. Sci. USA 89:5720-5724, 1992), raising the possibility that the Gs alpha protein may be an in vivo target for the interaction with pp60c-src. To further characterize the involvement of pp60c-src in the beta-adrenergic signalling pathway, we have overexpressed, in 10T1/2 cells, pp60c-src containing mutations in several domains which are believed to be important for signalling processes. In this study we show that the sites of phosphorylation by protein kinase C (PKC) (Ser-12 and Ser-48) as well as the SH2 region of pp60c-src are required for the enhanced response of c-src overexpressors to beta-agonist stimulation. Mutation at the site of myristylation (Gly-2) results in a decrease in the enhanced response, while mutation at the site of phosphorylation by cAMP-dependent protein kinase (Ser-17) has no effect. Two-dimensional phosphotryptic analyses indicate that phosphorylation on Ser-12 and Ser-48 in unstimulated cells is associated with the ability of overexpressed pp60c-src to potentiate beta-adrenergic signalling. Cells overexpressing wild-type c-src also exhibit enhanced cAMP accumulation upon treatment with cholera toxin, an effect that is abated in cells overexpressing pp60c-src defective in the kinase or SH2 domains or altered at the sites of phosphorylation by PKC. These studies provide the first evidence for the physiological significance of the pp60c-src sites of PKC phosphorylation. In addition, they show that the SH2, Ser-12/48, and myristylation regions may be important for efficient interaction of pp60c-src with components of the beta-adrenergic pathway. Our data also support the possibility that the Gs alpha protein may be an in vivo target for alteration by pp60c-src.  相似文献   

12.
Altered phosphorylation and activation of pp60c-src during fibroblast mitosis   总被引:39,自引:0,他引:39  
At least half the pp60c-src in NIH 3T3-derived c-src overexpresser cells in modified by novel threonine and, possibly, serine phosphorylation within its amino 16 kd region during mitosis. At the same time, the tryptic phosphopeptide containing Ser 17, the site of cyclic AMP-dependent phosphorylation, is either modified or dephosphorylated. While the amount of pp60c-src is not significantly altered, the in vitro-specific kinase activity of modified pp60c-src is enhanced 4- to 7-fold. Modified pp60c-src has the same tyrosine-containing tryptic phosphopeptides as pp60c-src from unsynchronized cells, indicating that activation is independent of Tyr 416/Tyr 527 phosphorylation. Electrophoretic mobility retardations indicated that endogenous pp60c-src and pp60v-src are similarly modified during mitosis. The modifications and enhanced activity disappear near the time of cell division. These results suggest that pp60c-src is regulated by and, in turn, may regulate mitosis-specific events in fibroblasts.  相似文献   

13.
We have shown previously that pp60c-src is a substrate for protein kinase C in vivo and that the target of protein kinase C phosphorylation in mammalian pp60c-src is serine 12. We now demonstrate that in addition to tumor promoters, all activators of phosphatidylinositol turnover that we have tested in fibroblasts (platelet-derived growth factor, fibroblast growth factor, serum, vasopressin, sodium orthovanadate, and prostaglandin F2 alpha) lead to the phosphorylation of pp60c-src at serine 12. In addition to stimulating serine 12 phosphorylation in pp60c-src, platelet-derived growth factor treatment of quiescent fibroblasts induces phosphorylation of one or two additional serine residues and one tyrosine residue within the N-terminal 16 kilodaltons of the enzyme and activates its immune complex protein-tyrosine kinase activity.  相似文献   

14.
We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.  相似文献   

15.
The transforming protein of polyomavirus, middle T (mT), forms a complex with two cellular enzymes: the protein tyrosine kinase pp60c-src and a phosphatidylinositol (PtdIns) 3-kinase. A mutant virus, Py1178T, encodes an mT protein which associates with and activates pp60c-src to the same extent as the wild type but fails to associate with PtdIns 3-kinase. To investigate relationships between activation of pp60c-src, association of PtdIns 3-kinase, and cellular levels of the second messenger inositol 1,4,5-trisphosphate (InsP3), we examined the effects of wild-type and mutant mT proteins on inositol metabolism in rat and mouse fibroblasts. Expression of either wild-type or 1178T mT caused a 300 to 500% increase in the InsP3 level. Cells transformed by Rous sarcoma virus also showed similar increases in InsP3 levels. Mutant mT proteins which failed to activate pp60c-src (NG59 and 1387T) had no effect on InsP3 levels. Pulse-chase experiments with [3H]inositol showed that the turnover of phosphoinositides was increased in cells transformed by either wild-type polyomavirus or Py1178T as compared with the normal parent cell line. The turnover of inositol phosphates was unchanged upon transformation. These data indicate that cells expressing either wild-type or mutant 1178T mT or pp60v-src exhibit elevated levels of InsP3 because of activation of phospholipase C. This activation appears to depend, directly or indirectly, upon activation of pp60src protein kinase activity. Activation of pp60c-src and elevation of InsP3 content are not sufficient for full transformation. Full transformation also requires the association of mT-pp60c-src complexes with PtdIns 3-kinase.  相似文献   

16.
17.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

18.
The endogenous cellular oncogene products, pp60c-src, exhibits a protein kinase activity, but is itself a phosphoprotein. Based on the assumption that pp60c-src might play a role in the control of cell proliferation, we have studied its behaviour as a substrate for phosphorylation known to occur when quiescent, serum-deprived cells are stimulated to enter cell cycle following addition of either serum, platelet-derived growth factor or the phorbol ester derivative, 12-O-tetradecanoyl-phorbol-13-acetate. For this purpose a partial purification of pp60c-src on DEAE ion-exchange chromatography was combined with immune precipitation. A 2-4-fold increase in serine phosphorylation of pp60c-src was consistently observed after stimulation of quiescent cells to growth.  相似文献   

19.
NIH 3T3 cells were transfected with plasmids containing Moloney murine leukemia virus long terminal repeats and either chicken c-src or v-src genes. In contrast with the effects observed after transfection with plasmids containing c-src and avian retrovirus or simian virus 40 promoter-enhancers (H. Hanafusa, H. Iba, T. Takeya, and F. R. Cross, p. 1-8, in G. F. Vande Woude, A. J. Levine, W. C. Topp, and J. D. Watson, ed., Cancer Cells, vol. 2, 1984; H. Iba, T. Takeya, F. R. Cross, T. Hanafusa, and H. Hanafusa, Proc. Natl. Acad. Sci. U.S.A. 81:4424-4428, 1984; R. C. Parker, R. Swanstrom, H. E. Varmus, and J. M. Bishop, p. 19-26, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; R. C. Parker, H. E. Varmus, and J. M. Bishop, Cell 37:131-139, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, p. 9-17, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984; D. Shalloway, P. M. Coussens, and P. Yaciuk, Proc. Natl. Acad. Sci. U.S.A. 81:7071-7075; and K. C. Wilhelmsen, W. G. Tarpley, and H. M. Temin, p. 303-308, in G. F. Vande Woude et al., ed., Cancer Cells, vol. 2, 1984), we found that both types of Moloney murine leukemia virus long terminal repeat-src expression plasmids induced focus formation, although c-src induced only 1% as many foci as v-src. The focus-selected c-src overexpressed cells had altered morphology and limited growth in soft agarose but were not tumorigenic in vivo. Cleveland digests, comparative in vitro kinase assays, secondary transfections, and immunoprecipitations indicated that focus formation was caused by rare transfection events that resulted in very high-level pp60c-src expression rather than by mutations of the transfected c-src genes. These results suggest that pp60v-src induced transformation is not a completely spurious activity which is unrelated to the function of pp60c-src but that it represents a perturbation of already existent molecular control processes involving pp60c-src.  相似文献   

20.
A kinetic analysis of the tyrosine-specific protein kinase of pp60c-src from the C1300 mouse neuroblastoma cell line Neuro-2A and pp60c-src expressed in fibroblasts was carried out to determine the nature of the increased specific activity of the neuroblastoma enzyme. In immune-complex kinase assays with ATP-Mn2+ and the tyrosine-containing peptide angiotensin I as phosphoacceptor substrate, pp60c-src from the neuroblastoma cell line was characterized by a maximum velocity (Vmax.) that was 7-15-fold greater than the Vmax. of pp60c-src from fibroblasts. The neuroblastoma enzyme exhibited Km values for ATP (16 +/- 3 microM) and angiotensin I (6.8 +/- 2.6 mM) that were similar to Km values for ATP (25 +/- 3 microM) and angiotensin I (6.5 +/- 1.7 mM) of pp60c-src from fibroblasts. pp60v-src expressed in Rous-sarcoma-virus-transformed cells exhibited an ATP Km value (25 +/- 4 microM) and an angiotensin I Km value (6.6 +/- 0.5 mM) that approximated the values determined for pp60c-src in neuroblastoma cells and fibroblasts. These results indicate that the pp60c-src kinase from neuroblastoma cells has a higher turnover number than pp60c-src kinase from fibroblasts, and that the neural form of the enzyme would be expected to exhibit increased catalytic activity at the saturating concentrations of ATP that are found intracellularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号