首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synopsis Stunting in freshwater fish populations may be due to low availability of one or more prey components within their diet. If the limiting prey constitute a trophic level (i.e. zooplankton, benthos, or fish), we define the phenomenon as a trophic bottleneck. Growth of a non-stunted population of yellow perch, Perca flavescens, was simulated using an allocation model based on reported ontogenetic shifts in diet (planktivory to benthivory to piscivory). The model was then perturbed by limiting the available ration individually for each of the three feeding types. The resulting simulated growth curves all reflected lower growth rates than the unperturbed state and the shape of the curve differed between the limited food types. Only the reduced benthic ration produced a simulated growth that matched that observed for the stunted yellow perch of Lac Hertel (Québec). To test the hypothesis that benthic ration was limiting growth in Lac Hertel, all the fish species in the lake were sampled for diet composition and total length at age. We predicted that species feeding upon benthic invertebrates should exhibit the slow growth characteristic of stunting (based on the results of the allocation model). Of the seven fish species found in Lac Hertel, four were stunted: yellow perch, pumpkinseed, Lepomis gibbosus, rock bass, Ambloplites rupestris, and brown bullhead, Ictalurus nebulosus. Three species were non-stunted: northern pike, Esox lucius, golden shiner, Notemigonus crysoleucas, and white sucker, Catostomus commersoni. All stunted species fed on benthic invertebrates and all non-stunted species, except the white sucker, did not feed upon benthos. The prediction of the allocation model was thus supported.  相似文献   

2.
Synopsis The white perch,Morone americana, is an east coast estuarine species that invaded Lake Erie in the 1950's, but did not increase in abundance until the mid 1970's. We studied its distribution and feeding during spawning in the Sandusky River, Ohio in 1981–1983. White perch were present in the area from early April through May, but abundance was highest on bedrock riffles about 45 km upstream from Lake Erie. Spawning activity peaked in the last week of April when temperatures approached 18°C. White perch collected in early April had eaten walleye,Stizostedion vitreum vitreum, eggs. As spawning activity of white perch increased, feeding activity declined, and most fish collected during late April contained no food. Egg predation increased again in May, but the eggs eaten then were those of white bass,Morone chrysops, white perch, and possibly other species. We have no evidence that egg predation by white perch has affected walleye or white bass recruitment, but it could become a problem if white perch continue to increase in abundance.  相似文献   

3.
Over the past 20+ years, fish with elevated concentrations of mercury (Hg) have been observed in remote lake districts, including the Adirondack region of New York. Across eastern North America studies have also reported a negative correlation between fish Hg concentration and lake pH. Recent controls in emissions of sulfur dioxide (SO2) have resulted in some improvement in the acid–base status of acid-impacted surface waters including Adirondack lakes. In addition, there has been an apparent decrease in atmospheric Hg deposition. A synoptic survey of 25 lakes in the Adirondacks was conducted in 1992–1993 to analyze spatial patterns of Hg in the water column and yellow perch (Perca flavescens). The same cluster of 25 lakes was resurveyed in 2005–2006 to evaluate if changes in lake concentrations of Hg species or fish Hg have occurred. We observed a varied response of changes in water chemistry and fish Hg concentrations. In twelve of the resurveyed lakes the yellow perch had lower Hg concentrations, six lakes had yellow perch with higher Hg concentrations, and in seven lakes yellow perch Hg concentrations did not change significantly (α = 0.05). Four variables appear to influence the change in yellow perch Hg concentrations in the Adirondacks: watershed area, elevation, change in pH, and change in fish body condition. We hypothesize that as the acidity in lakes is attenuated, the lakes may become more productive and/or water quality conditions less stressful to fish leading to increasing fish body condition. As fish body condition improves, fish exhibit “growth dilution” of tissue contaminants leading to lower fish Hg concentrations.  相似文献   

4.
Summary Densities of the cladoceran, Holopedium gibberum, were manipulated in 18 enclosures containing juvenile (age 0+) yellow perch (Perca flavescens) and mean-lake densities of other zooplankton. In enclosures, where nearlake densities of all zooplankton species including Holopedium were maintained, young-of-the-year perch grew significantly heavier and longer than in experimental enclosures where Holopedium was excluded. Holopedium comprised between 15–45% of the diet (wet weight) of perch in the first 2 weeks of July in the control treatment (Holopedium at or near ambient lake densities) and only 3–7% of total biomass ingested in the experimental treatment (Holopedium density selectively reduced). Predation on Holopedium decreased dramatically after the 2nd week of July in the control treatment after which Chaoborus, chironomids, and Sida became dominant prey items (by weight) of juvenile perch. These findings suggest that growth and survivorship of age 0+ perch in Precambrian Shield lakes may be coupled to Holopedium abundance. Thus, utilization of Holopedium by young-of-the-year yellow perch may affect recruitment of this species since overwintering survivorship, range of accessible prey sizes or species, and vulnerability of juvenile perch to predation by larger fish depend on body size, which is reduced when Holopedium is excluded from the diet.  相似文献   

5.
Summary The central mudminnow (Umbra limi) and yellow perch (Perca flavescens) are two species of fishes that commonly co-occur in small bog lakes in the Great Lakes region of North America. Both species are dietary generalists with a high degree of dietary overlap, and perch populations have been shown to have a strong negative effect on mudminnow populations. I compared the foraging rates of the two species in a series of laboratory experiments in which four foraging sites were simulated (open bottom substrate, water column, submerged aquatic macrophytes, and water surface). Fish were observed as they foraged singly, in monospecific pairs, and in mixed species pairs to evaluate the effects of intra- and interspecific competition on foraging success and the potential for resource partitioning based on foraging site. Single species trials showed that each species had similar foraging rates at each of the four sites. Across all sites combined, interspecific competition had a greater negative effect on the foraging success of mudminnows than did intraspecific competition. Conversely, intraspecific competition had a greater negative effect on the foraging success of perch than did interspecific competition. In mixed species trials perch took more food items from each of the four foraging sites than did mudminnows and caused shifts in site-use patterns of mudminnows. Differences in the foraging success of the two species reflected the superior ability of perch to discover the presence of food and to search rapidly for additional items, but were unrelated to handling times. These differences were linked to the species' foraging modes. The competitive superiority of perch, demonstrated in these experiments, could contribute to the negative impact of perch on mudminnow populations under natural conditions.  相似文献   

6.
Maintenance of genetic and phenotypic diversity is widely recognized as an important conservation priority, yet managers often lack basic information about spatial patterns of population structure and its relationship with habitat heterogeneity and species movement within it. To address this knowledge gap, we focused on the economically and ecologically prominent yellow perch (Perca flavescens). In the Lake Michigan basin, yellow perch reside in nearshore Lake Michigan, including drowned river mouths (DRMs)—protected, lake‐like habitats that link tributaries to Lake Michigan. The goal of this study was to examine the extent that population structure is associated with Great Lakes connected habitats (i.e., DRMs) in a mobile fish species using yellow perch as a model. Specifically, we tested whether DRMs and eastern Lake Michigan constitute distinct genetic stocks of yellow perch, and if so, whether those stocks migrate between the two connected habitats throughout the year. To do so, we genotyped yellow perch at 14 microsatellite loci collected from 10 DRMs in both deep and littoral habitats during spring, summer, and autumn and two nearshore sites in Lake Michigan (spring and autumn) during 2015–2016 and supplemented our sampling with fish collected in 2013. We found that yellow perch from littoral‐DRM habitats were genetically distinct from fish captured in nearshore Lake Michigan. Our data also suggested that Lake Michigan yellow perch likely use deep‐DRM habitats during autumn. Further, we found genetic structuring among DRMs. These patterns support hypotheses of fishery managers that yellow perch seasonally migrate to and from Lake Michigan, yet, interestingly, these fish do not appear to interbreed with littoral fish despite occupying the same DRM. We recommend that fisheries managers account for this complex population structure and movement when setting fishing regulations and assessing the effects of harvest in Lake Michigan.  相似文献   

7.
1. Benthic invertebrate community composition and yellow perch (Perca flavescens) diet, growth and activity levels from lakes along a metal‐contamination gradient were used to assess the importance of a naturally diverse prey base for maintaining energy transfer to growing fish, and how this transfer is disrupted by metal contamination. 2. Zoobenthic communities had lower diversity in metal‐contaminated lakes, with a notable absence of large bodied invertebrate taxa. 3. The average mass of non‐zooplankton prey items was significantly greater for 2+ and 3+ perch from the reference lake, and increased significantly with age in all except the most contaminated lakes where prey choice was limited. 4. Benthivorous perch from all contaminated lakes exhibited slowed growth. Perch from one of the contaminated lakes exhibited faster growth during piscivory, indicating slowed growth only while benthivorous. 5. Estimates of fish activity, using the activity of the glycolytic enzyme Lactate dehydrogenase in perch white muscle tissue as a proxy, suggested that shifts in diet to larger prey (in reference and intermediately contaminated lakes) lowered activity costs, which may explain how diet shifts maintain growth efficiency as perch grow larger.  相似文献   

8.
The effects of temperature on seasonal growth and year class strength of perch Perca fluviatilis were studied in a subarctic lake in northern Finland. Two growth models, power and von Bertalanffy, were used to estimate the growth of perch during the growing season from 1988 to 1990. Air temperature, estimated as degree-days >10° C, significantly improved both model fits. The sum of degree-days also correlated positively with the year class strength of perch. The strongest year class was born in a warm summer 1988, while the 1987 year class was totally absent, which was due to the very cold summer of that year. The backcalculation of lengths of fish caught in 1990 showed that the overall growth of perch was slow in the cold summer of 1987 and relatively rapid in the warm summer of 1988. The subsequent growth of the abundant 1988 year class was rapid, even though the summers of 1991 and 1992 were relatively cool. The improved growth could be due to the lack of competition with previous weak year classes of 1986 and 1987. This observation suggests that density-dependent factors might affect growth even near the northern limits of the distribution range of perch.  相似文献   

9.
Summary One potentially important effect of interspecific competition in freshwater fish communities is to increase predation intensity from gape-limited piscivores by lowering growth rates of prey species. We investigated the operation and consequences of competition between central mudminnows (Umbra limi) and yearling yellow perch (Perca flavescens) in a system where size-limited predation on mudminnows by larger perch is a principle structuring mechanism. During laboratory experiments in which mudminnows foraged for patchily-presented food in the presence and absence of yearling perch, the food intake of mudminnows decreased at both the population and individual-fish levels when perch were present. Mudminnows were neither less active nor did they occupy lower-quality food patches in the presence of perch; exploitation competition, rather than interference or predator avoidance, appeared responsible for reduced feeding success. To assess effects of competition in the field, we examined size distributions and condition factors of yearling mudminnows and perch in small Wisconsin lakes having mudminnow-only and mudminnow-perch assemblages. Yearling mudminnows were smaller and in poorer condition in an assemblage composed (by mass) of 45% yearling perch than in two mudminnow-only assemblages. Conversely, yearling perch were larger and in better condition when the mudminnow-perch assemblage contained only 45% perch then when it contained 92% perch. Our experimental and field results indicated that an asymmetrical competitive relationship could contribute directly to the interspecific population dominance of perch over mudminnows in Umbra-Perca assemblages through reduced food intake, growth, and condition of mudminnows, and indirectly through increased vulnerability of mudminnows to size-limited predation.  相似文献   

10.
Synopsis Relationships between sublethal concentrations of cadmium and zinc in natural water and metal uptake by and growth of fish were investigated. RNA-DNA ratios and weight gain were used to assess seasonal growth differences between yellow perch populations from contaminated and control sites. Whole-body concentrations of cadmium and zinc in young-of-the-year perch (Perca flavescens) were significantly different between sites. Measurable growth differences did occur and were significantly correlated with cadmium levels. Growth differences that were prominent during mid-summer were reduced by late summer. RNA-DNA ratios were sensitive indicators of fish growth.  相似文献   

11.
Variation in diet of yellow perch (Perca flavescens) in a Quebec reservoir   总被引:1,自引:1,他引:0  
We determined the diet of 1 to 1 1/2 a old yellow perch (Perca flavescens) in a Quebec reservoir, relative to occurrences of available prey species and size classes of prey. We used Schindler-Patalas trap samples taken over four 24-h intervals between June and September 1981 to determine size distribution of available prey species. Relative abundances and size distribution of ingested prey species were determined from examination of gut contents of perch trapped by gill nets during the same time intervals. Electivity values of different prey species and of different size classes of prey were determined. Larger zooplankton prey (e.g.Epischura andLeptodora) were generally preferred but there was considerable variability in diet among individual fish that cannot be explained by patterns of prey availability. Within particular size classes of prey, perch have definite preferences, e.g. when perch consume small prey, they preferBosmina to other similar-sized prey. These results are discussed in relation to theories attempting to describe and predict feeding patterns of planktivorous fish species.Deceased, June 6, 1983  相似文献   

12.
Samples of Nile perch (Lates niloticus L.) were collected for stomach analysis from trawl catches conducted in the Mwanza Gulf from September 1986 to September 1988. Initially haplochromine cichlids formed the main food item for the Nile perch. Despite their decline, haplochromines still formed the major part of its diet in 1986. After the virtually complete disappearance of the haplochromines in 1987 and 1988, the benthic shrimp Caridina nilotica, the pelagic cyprinid, Rastrineobola argentea and juvenile Nile perch became the main food of Nile perch. Twenty-four trawl sessions were conducted to determine the relative quantities of respective prey taken. When present, Caridina is the major prey, mainly taken by day. If absent, juvenile Nile perch constitute the main part of the diet. Seasonal differences in diet composition probably reflect seasonal fluctuations in the abundance of the main prey species.  相似文献   

13.
Complex habitat structures can influence the foraging success of fish. Competition for food between fish species can therefore depend on the competitors' abilities to cope with structural complexity. In laboratory experiments, we comparatively assessed effects of zebra mussels (Dreissena polymorpha Pall .) on the foraging success of Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)). In single‐species and mixed‐species experiments, the fish were fed caddisfly larvae (Tinodes waeneri (L.)) over complex (mussel‐covered stones) and less‐complex (bare stones) substrates. With intraspecific competition, food consumption by perch and ruffe decreased significantly when the complex substrate was used. With interspecific competition, food consumption by perch and ruffe did not change with substrate complexity, but perch clearly out‐competed ruffe on both substrates. Zebra mussel beds provide a refuge for macrozoobenthos against predation by ruffe and probably also by perch. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Aim To determine the origins of the host–parasite association between among yellow perch (Perca flavescens[Mitchill]) and the parasites Crepidostomum cooperi Hopkins, Proteocephalus pearsei La Rue and Urocleidus adspectus Beverly Burton. Of secondary interest are the parasites Bunodera luciopercae (Muller) and Proteocephalus percae (Muller) predictably associated with the Eurasian perch. Location The areas considered are the Holarctic, since the upper‐Cretaceous, and contemporary North America. Methods Published and new information from host and parasite phylogenies, palaeontology, palaeogeography and plate tectonics and host biology is incorporated to assess the origins of yellow perch and several of its parasites. This information is used to determine the origins for these host–parasite associations. Results Cladistic analysis suggests a Laurasian origin for Percidae and Perca, and that Perca is sister to the other genera in the family. Parasite phylogenies support a North American origin for the three species associated with yellow perch and a Laurasian origin for B. luciopercae. Proteocephalus pearsei and P. percae are not sister taxa. The fossil record for Perca dates to the Miocene in Europe and the Pleistocene in North America. North America and Europe were connected across the North Atlantic since at least the upper Cretaceous with separation complete by the Miocene. Europe was separated from Asia by the Obik Sea from the late Cretaceous until the Oligocene. Western cordillera orogeny and its accompanying high rates of water flow and Pleistocene glaciation represent barriers to Perca dispersal. Main conclusions The origin of Perca in North America dates at least to the late Oligocene when North America and Europe were connected across the North Atlantic and Europe and Asia were separate landmasses, and does not result from Pleistocene dispersal across Beringia from Asia. The present disjunction of Perca species in North America and Europe is due to the vicariant separation of North America and Europe. Based on the available information, yellow perch and its parasites have a North America origin. The association between yellow perch and the parasites in all cases is a consequence of host switching from other sympatric host species in North America and is not explained by co‐speciation. Even the association between the host‐specific Urocleidus adspectus and yellow perch originated with a host switch and is not due to co‐speciation. The basis for this host switching is geographical and ecological sympatry, especially shared feeding habits, with other North American fish hosts.  相似文献   

15.
Fish respiration rates that are presumed to represent standard metabolic rates (SMR) may sometimes include an unspecified energy expenditure associated with activity and digestion. This situation may introduce a bias in bioenergetics models because standard metabolism, digestion, and activity may not be affected by the same environmental conditions. The aim of this study was to (1) develop a SMR model for juvenile yellow perch, Perca flavescens (Mitchill), that represent the minimum energy expenditure required to maintain life and (2) compare the results of this study with published perch metabolic rates and bioenergetics models. SMR was estimated for yellow perch over a range of body␣mass (4.4–24.7 g) and water temperature (12–20°C). The intercept of the relationship between fish respiration and swimming velocity obtained during forced swimming experiments was used to determine SMR. SMR estimated by the present study were comparable to values presented by two published studies on Eurasian perch, Perca fluviatilis L. However, estimated SMR were 4.1–20.9 times lower than values of a third respirometry study and predictions of bioenergetics models for perch. The present study suggests that published SMR models may sometimes include a significant fraction of energy expenditures (39.2–75.9%) associated with digestion and activity. This may complicate the implementation and the interpretation of fish bioenergetics models. The present study indicates that the intercept of respiration-velocity relationships and long-term respiration rates during starvation experiments may provide similar and reliable SMR values.  相似文献   

16.
Synopsis Gastric evacuation rates (R) of white perch,Morone americana, were determined in laboratory experiments and by using field data. The resulting relationship ofR and temperature (T) for white perch wasR = 0.028e0.106T (r2 = 0.98). The high r2 of the regression indicates good agreement of the combined laboratory and field data. Our rate compares well with those available for other species; and especially for Eurasian perch, which has a similar thermal existence to white perch in Lake Erie.  相似文献   

17.
Bluegill (Lepomis macrochirus) and yellow perch (Perca flavescens) populations are often sympatric in the Great Plains region of the U.S.A. and portions of Canada; however, very little attention has been given to potential interactions between these species for available resources, especially during the early life stages. Relationships between age-0 bluegill and yellow perch growth and relative abundance were explored across multiple lakes and years within the Nebraska Sandhill region, USA. In addition, four habitat patch types (open water, Phragmites spp., Typha spp., Scirpus spp.) were sampled for age-0 bluegill and yellow perch, and food habits were examined for each species during August, September, and October of 2009 in one of these lakes. Age-0 yellow perch growth was negatively related to age-0 bluegill relative abundance across a spatiotemporal scale. Age-0 bluegill and yellow perch exhibited similar habitat use (moderate–high overlap), but generally consumed different important and dominant prey taxa (bluegill consumed both macroinvertebrates—56?% and zooplankton—44?%, while yellow perch consumed more zooplankton—66?%), which resulted in low overall diet overlap between species. Previous research indicates that age-0 yellow perch diet ontogeny often results in feeding predominately on macroinvertebrates and positively selecting them (and avoiding zooplankton prey) at sizes observed in our study. Therefore, yellow perch growth rates may be compromised by the presence of bluegill because of the need to consume less energetically profitable prey items such as zooplankton.  相似文献   

18.
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long‐reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi‐C, we generated a high‐continuity chromosome‐scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome‐size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male‐specific duplicate of the anti‐Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex‐specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+) from XX genetic females (amhr2by?). Our high‐quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex‐determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.  相似文献   

19.
1. When available, Daphnia spp. are often preferred by age‐0 yellow perch and bluegill sunfish because of energetic profitability. We hypothesised that predation by age‐0 yellow perch could lead to a midsummer decline (MSD) of Daphnia spp. and that priority effects may favour yellow perch because they hatch before bluegill, allowing them to capitalise on Daphnia spp. prior to bluegill emergence. 2. Data were collected from 2004 to 2010 in Pelican Lake, Nebraska, U.S.A. The lake experienced a prolonged MSD in all but 1 year (2005), generally occurring within the first 2 weeks of June except in 2008 and 2010 when it occurred at the end of June. MSD timing is not solely related to seasonal patterns of age‐0 yellow perch consumption. Nevertheless, when Daphnia spp. biomass was low during 2004 and 2006–2010 (<4 mg wet weight L?1), predation by age‐0 yellow perch seems to have suppressed Daphnia spp. biomass (i.e. <1.0 mg wet weight L?1). The exception was 2005 when age‐0 yellow perch were absent. 3. Growth of age‐0 bluegill was significantly faster in 2005, when Daphnia spp. were available in greater densities (>4 mg wet weight L?1) compared with the other years (<0.2 mg wet weight L?1). 4. We conclude that age‐0 yellow perch are capable of reducing Daphnia biomass prior to the arrival of age‐0 bluegill, ultimately slowing bluegill growth. Thus, priority effects favour age‐0 yellow perch when competing with age‐0 bluegill for Daphnia. However, these effects may be minimised if there is a shorter time between hatching of the two species, higher Daphnia spp. densities or lower age‐0 yellow perch densities.  相似文献   

20.
1. The outcome of interspecific competition for food resources depends both on the competitors’ sensory abilities and on environmental conditions. In laboratory experiments we tested the influence of daylight and darkness on feeding behaviour and specific growth rate (SGR) of two species with different sensory abilities. 2. We used perch (Perca fluviatilis) as a visually orientated, and ruffe (Gymnocephalus cernuus) as a mechano‐sensory oriented predator and tested their growth rates and behaviour under conditions of interspecific and intraspecific competition. Three different foraging conditions were used: food supplied (i) only during the day, (ii) only during the night or (iii) during both day and night. 3. In perch neither SGR nor feeding behaviour were influenced substantially by interspecific competition during daylight. During darkness their foraging behaviour changed markedly and their access to the food source as well as their SGR were negatively affected by the presence of ruffe. 4. Ruffe's foraging behaviour did not change during either day or night with interspecific competition. During the night ruffe's SGR was higher with interspecific competition, probably because of a release from intraspecific competition and the competitive inferiority of perch during the night. 5. Because of its seonsory abilities ruffe feeds predominantly at night, thereby reducing competitive interference from perch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号