首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune encephalomyelitis (EAE) is a CD4 Th1-mediated inflammatory demyelinating disorder of the CNS and a well-established animal model for multiple sclerosis. Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a cytosolic tyrosine phosphatase that is involved in regulating the T cell activation cascade from signals initiated through the TCR. To study the role of SHP-1 in EAE pathogenesis, we immunized B10.PL mice heterozygous for deletion of the SHP-1 gene (me(v+/-)) and B10.PL wild-type mice with the immunodominant epitope of myelin basic protein (MBP Ac1-11). T cell proliferation and IFN-gamma production were significantly increased in me(v+/-) mice after immunization with MBP Ac1-11. The frequency of MBP Ac1-11-specific CD4 T cells, analyzed by staining with fluorescently labeled tetramers (MBP1-11[4Y]: I-A(u) complexes), was increased in the draining lymph node cells of me(v+/-) mice compared with wild-type mice. In addition, me(v+/-) mice developed a more severe course of EAE with epitope spreading to proteolipid protein peptide 43-64. Finally, expansion of MBP Ac1-11-specific T cells in response to Ag was enhanced in me(v+/-) T cells, particularly at lower Ag concentrations. These data demonstrate that the level of SHP-1 plays an important role in regulating the activation threshold of autoreactive T cells.  相似文献   

2.
Our lab has demonstrated that encephalitogenic T cells can be effectively anergized by treatment with MHC variant peptides, which are analogues of immunogenic peptides containing an amino acid substitution at an MHC anchor residue. The MHC variant peptide of myelin oligodendrocyte glycoprotein (MOG)(35-55) proves an effective treatment as it does not induce symptoms of experimental autoimmune encephalomyelitis and fails to recruit macrophages or MOG(35-55)-specific T cells to the CNS. In this study, we sought to characterize the signaling pathways required for the induction of anergy by building upon the observations identifying the tyrosine phosphatase SHP-1 as a critical regulator of T cell responsiveness. Motheaten viable heterozygous mice, which contain a mutation in the SHP-1 gene resulting in a reduction in functional SHP-1, were challenged with MOG(35-55) or the MOG(35-55) MHC variant 45D. These mice display symptoms of experimental autoimmune encephalomyelitis upon immunization with MHC variant peptide and have significant CNS infiltration of tetramer-positive CD4(+) cells and macrophages, unlike B6 mice challenged with the variant peptide. The effects of SHP-1 are directly on the T cell as Motheaten viable heterozygous mice autoreactive T cells are not anergized in vitro. Lastly, we demonstrate no distinguishable difference in the initial interaction between the TCR and agonist or MHC variant. Rather, an unstable interaction between peptide and MHC attenuates the T cell response, seen in a decreased half-life relative to MOG(35-55). These results identify SHP-1 as a mediator of T cell anergy induced by destabilized peptide:MHC complexes.  相似文献   

3.
Autoreactive T cells can be induced by altered peptide ligands to switch Th1 and Th2 phenotypes. The underlying molecular mechanism is critical for understanding of activation of autoreactive T cells and development of novel therapeutic strategies for autoimmune conditions. In this study, we demonstrated that analog peptides of an immunodominant epitope of myelin basic protein (residues 83-99) with alanine substitution at Val(86) and His(88) had a unique partial agonistic property in the induction of Th1 or Th2 deviation in MBP(83-99)-reactive T cell clones typical of Th0 phenotype. The observed phenotypic switch involved differential activation of ERK, p38, and JNK MAPKs. More specifically, Th1 deviation induced by peptide 86V-->A (86A) correlated with enhanced p38 and JNK activities, while Th2 deviation by peptide 88H-->A (88A) was associated with up-regulated ERK activity and a basal level of p38 and JNK activity. Further characterization revealed that a specific inhibitor for ERK selectively prevented Th2 deviation of MBP(83-99)-specific T cells. Conversely, specific inhibitors for p38 and JNK blocked Th1 deviation in the same T cell preparations induced by peptide 86A. The findings have important implications in our understanding of regulation of ERK, p38, and JNK by altered peptide ligands and their role in cytokine regulation and phenotype switch of autoreactive T cells.  相似文献   

4.
The role of class II restriction in T cell recognition of an epitope of the autoantigen myelin basic protein (MBP) has been investigated. Encephalitogenic PL/J(H-2u) and (PL/J X SJL/J(H-2s))F1 ((PLSJ)F1) clones, isolated after immunization with intact MBP, recognize the N-terminal 11 amino acid residues of MBP in association with I-Au class II molecules. The synthetic peptide MBP 1-11 has been tested in vivo for induction of EAE. Clinical and histological EAE occurs in PL/J and (PLSJ)F1 mice but not SJL/J. The class II restriction of T cells primed with MBP 1-11 has been examined in primary cultures in vitro. Similar to encephalitogenic T cell clones, isolated after continuous selection in vitro, the population of MBP 1-11-specific proliferative PL/J and (PLSJ)F1 T cells, recognize this epitope in association with I-Au class II molecules. Not all MBP-specific T cell clones which are restricted to I-Au class II molecules cause autoimmune encephalomyelitis. The specificity of these non-encephalitogenic clones has been examined in this report. These clones also recognize MBP 1-11. Thus recognition of an encephalitogenic T cell epitope is not sufficient for induction of EAE.  相似文献   

5.
Lewis rats can be rendered unresponsive to experimental autoimmune encephalomyelitis by immunization with myelin basic protein (MBP), or MBP68-86, the dominant encephalitogenic MBP epitope for this strain, administered in IFA. However, protected rats harbor potentially encephalitogenic T cells, which are maintained in an inactive state. We investigated whether these quiescent effector cells could be activated in vitro. Although these T cells respond poorly to MBP68-86, they proliferate vigorously whether cocultured with MBP68-86 and either IL-2 or IL-12, suggesting that the T cells are in a state of anergy. Moreover, we could activate these anergic T cells with peptide and cytosine-guanine dinucleotide (CpG) oligonucleotide, but not control oligonucleotide, suggesting that products of the innate immune response are capable of activating anergic autoreactive T cells. The activated T cells produced the proinflammatory cytokine, IFN-gamma in response to IL-12, and IL-6 was secreted in response to CpG oligonucleotide. IL-6 has been reported to play a role in T cell activation by blocking T regulatory/suppressor (Treg) cell-mediated suppression through a Toll-like receptor-dependent pathway. However, anti-IL-6 mAb did not block CpG activation of the anergized cells. In contrast, anti-TGF-beta(1) Ab released the unresponsive T cells from the anergic state in the presence of MBP68-86, whereas TGF-beta(1) inhibited proliferation of MBP68-86- plus CpG-activated T cells. Because TGF-beta(1) has previously been implicated in Treg activity, this finding is consistent with a role for Treg cells in maintaining autoreactive T cells in the anergic state.  相似文献   

6.
In humans, studies of autoreactive T cells that mediate multiple sclerosis have been largely confined to testing peripheral blood lymphocytes. Little is known how such measurements reflect the disease-mediating autoreactive T cells in the CNS. This information is also not available for murine experimental allergic encephalomyelitis (EAE); the low number of T cells that can be obtained from the blood or the brain of mice prevented such comparisons. We used single-cell resolution IFN-gamma ELISPOT assays to measure the frequencies and functional avidities of myelin basic protein (MBP:87-99)-specific CD4 cells in SJL mice immunized with this peptide. Functional MBP:87-99-specific IFN-gamma-producing cells were present in the CNS during clinical signs of EAE, but not during phases of recovery. In contrast, MBP:87-99-specific T cells persisted in the blood during all stages of the disease, and were also present in mice that did not develop EAE. Therefore, the increased frequency of MBP:87-99-reactive T cells in the blood reliably reflected the primed state, but not the inflammatory activity of these cells in the brain. The functional avidity of the MBP:87-99-reactive T cells was identical in the brain and blood and did not change over 2 mo as the mice progressed from acute to chronic EAE. Therefore, high-affinity T cells did not become selectively enriched in the target organ, and avidity maturation of the MBP:87-99-specific T cell repertoire did not occur in the observation period. The data may help the interpretation of measurements made with peripheral blood lymphocytes of multiple sclerosis patients.  相似文献   

7.
Autoreactive T cells represent a natural repertoire of T cells in both diseased patients and healthy individuals. The mechanisms regulating the function of these autoreactive T cells are still unknown. Ob1A12 is a myelin basic protein (MBP)-reactive Th cell clone derived from a patient with relapsing-remitting multiple sclerosis. Mice transgenic for this human TCR and DRA and DRB1*1501 chains develop spontaneous experimental autoimmune encephalomyelitis. The reactivity of Ob1A12 is reported to be restricted to recognition of MBP peptide 85-99 in the context of DRB1*1501. DRA/DRB1*1501 and the patient's other restriction element, DRA/DRB1*0401, differ significantly in their amino acid sequences. In this study we describe an altered peptide ligand derived from MBP(85-99) with a single amino acid substitution at position 88 (Val to Lys; 88V-->K), that could stimulate the Ob1A12.TCR in the context of both DRA/DRB1*1501 and DRA/DRB1*0401. Analysis of a panel of transfected T cell hybridomas expressing Ob1A12.TCR and CD4 indicated that Ob1A12.TCR cross-reactivity in the context of DRA/DRB1*0401 is critically dependent on the presence of the CD4 coreceptor. Furthermore, we found that activation of Ob1A12.TCR with MBP altered peptide ligand 85-99 88V-->K presented by DRB1*1501 or DRB1*0401 resulted in significant differences in TCR zeta phosphorylation. Our data indicate that injection of altered peptide ligand into patients heterozygous for MHC class II molecules may result in unexpected cross-reactivities, leading to activation of autoreactive T cells.  相似文献   

8.
We have determined that certain altered peptide ligands (APLs) can induce T-cells specific for the native peptide myelin basic protein (MBP) p85-99 to secrete Th2-type cytokines such as IL-4 and IL-5 in the absence of significant Th1-type cytokines. However, it is not known whether stimulation with APLs will activate autoreactive T cells or a distinct population of cells. In the present study, 18 T-cell clones that reacted with either MBP p85-99 or one of three APLs of the peptide substituted at TCR contact residues were generated. T-cells were tested functionally for their reactivity to the original stimulating peptide as well as to the MBP APLs. In addition, the T-cell receptor (TCR) alpha and beta chains of each of these clones were sequenced. In a series of T-cell clones isolated from a multiple sclerosis patient, stimulation of T-cells with the APL 93A, which has an alanine for lysine substitution at the TCR contact residue 93, did not induce substantial proliferation of MBPp85-99-specific T-cell clones, indicating that a distinct set of T-cell clones was induced. However, this was not the case for another set of T-cell clones from a different individual in which the 93A peptide induced clonal expansion of T-cells highly reactive with the native MBPp85-99 antigen. Thus, the potential beneficial effect of using APLs to induce downregulatory cytokines appears to depend on the specific T-cell repertoire of the individual patient.  相似文献   

9.
Analogs of immunogenic peptides containing substitutions at TCR contact residues (altered peptide ligands (APLs)) have been used to manipulate Ag-specific T cell responses in models of autoimmunity, including experimental autoimmune encephalomyelitis. However, recent clinical trials with APL of a myelin basic protein epitope revealed limitations of this therapy. In this study, we demonstrate that individual myelin oligodendrocyte glycoprotein (MOG) 35-55-specific T cell clones responded differentially to a MOG 35-55 APL, raising questions about the ability of peptide analogs containing amino acid substitutions at TCR contact residues to control polyclonal populations of T cells. In contrast, we found that a variant peptide containing a substitution at an MHC anchor residue uniformly affected multiple MOG 35-55-specific clones and polyclonal lines. Stimulation of polyclonal MOG 35-55-specific T cells with an MHC variant peptide resulted in the induction of anergy, as defined by a dramatic reduction in proliferation and IL-2 production upon challenge with wild-type peptide. Furthermore, treatment of T cell lines with this peptide in vitro resulted in a significant reduction in their encephalitogenicity upon adoptive transfer. These results indicate that the use of MHC anchor-substituted peptides may be efficacious in the regulation of polyclonal T cell responses such as those found in EAE.  相似文献   

10.
Thyroglobulin (Tg) is unique in its ability to incorporate and store available iodine in the form of iodotyrosyl residues. Iodination of Tg has been known to increase its immunopathogenicity in experimental animals, presumably through the formation of iodine-containing neoantigenic determinants that can elicit an autoimmune response, but defined pathogenic Tg peptides carrying iodotyrosyls have not yet been identified. We report in this study that a systematic, algorithm-based search of mouse Tg has delineated three iodotyrosyl-containing peptides that activate autoreactive T cells and cause experimental autoimmune thyroiditis in normal CBA/J mice. These peptides (aa 117-132, 304-318, and 1931-1945) were not immunogenic in their native form, and iodination of tyrosyls facilitated either peptide binding to MHC or T cell recognition of the peptide. These results demonstrate that iodotyrosyl formation in normal Tg confers pathogenic potential to certain peptides that may otherwise remain innocuous and undetectable by conventional mapping methods.  相似文献   

11.
Previous studies have demonstrated that an MHC class II molecule with an antigenic peptide genetically fused to its beta-chain is capable of presenting this peptide to CD4(+) T cells. We hypothesized that covalent peptide/class II complex may direct the accessory molecules to exert their function specifically onto T cells in a TCR-guided fashion. To test this hypothesis, we generated several recombinant adenoviruses expressing covalent myelin basic protein peptide/I-A(u) complex (MBP(1-11)/I-A(u)) and the costimulatory molecule B7-1. Functional studies demonstrated that adenovirus-infected cells are capable of activating an MBP(1-11)-specific T cell hybridoma. Coexpression of the B7-1 molecule and MBP(1-11)/I-A(u) by the same adenovirus leads to synergy in T cell activation elicited by virus-infected cells. Furthermore, studies in syngeneic mice infected with the various adenoviruses revealed that MBP(1-11)-specific T cells are specifically activated by the coexpression of B7-1 and MBP(1-11)/I-A(u) in vivo. In conclusion, the coexpression of the covalent peptide/class II complex and accessory molecules by the same adenovirus provides a unique strategy to modulate the epitope-specific T cell response in a TCR-guided fashion. This approach may be applicable to investigate the roles of other accessory molecules in the engagement of the TCR class II molecule by substituting B7-1 with other accessory molecules in the recombinant adenovirus.  相似文献   

12.
Multiple sclerosis (MS) is a severe central nervous system disease. Experimental autoimmune encephalomyelitis (EAE) mimics MS in mice. We report that spontaneous development of EAE in RAG-1-deficient mice transgenic for a myelin basic protein (MBP)-specific TCR (TgMBP+/RAG-1-/-) requires expression of the T cell costimulatory molecule CD28. Surprisingly, T cells from CD28-/-TgMBP+/RAG-1-/- mice proliferate and produce IL-2 in response to MBP1-17 peptide in vitro, excluding clonal anergy as the mechanism of CD28-regulated pathogenesis. Proliferation of autoaggressive T cells was dependent on the concentration of the MBP peptide, as was the development of MBP-induced EAE in CD28-deficient PL/J mice. These results provide the first genetic evidence that CD28 costimulation is crucial for MBP-specific T cell activation in vivo and the initiation of spontaneous EAE.  相似文献   

13.
Molecular mimicry is the process by which T cells activated in response to determinants on an infecting microorganism cross-react with self epitopes, leading to an autoimmune disease. Normally, infection of SJL/J mice with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) results in a persistent CNS infection, leading to a chronic progressive, CD4(+) T cell-mediated demyelinating disease. Myelin damage is initiated by T cell responses to virus persisting in CNS APCs, and progressive demyelinating disease (50 days postinfection) is perpetuated by myelin epitope-specific CD4(+) T cells activated by epitope spreading. We developed an infectious model of molecular mimicry by inserting a sequence encompassing the immunodominant myelin epitope, proteolipid protein (PLP) 139-151, into the coding region of a nonpathogenic TMEV variant. PLP139-TMEV-infected mice developed a rapid onset paralytic inflammatory, demyelinating disease paralleled by the activation of PLP139-151-specific CD4(+) Th1 responses within 10-14 days postinfection. The current studies demonstrate that the early onset demyelinating disease induced by PLP139-TMEV is the direct result of autoreactive PLP139-151-specific CD4(+) T cell responses. PLP139-151-specific CD4(+) T cells from PLP139-TMEV-infected mice transferred demyelinating disease to naive recipients and PLP139-151-specific tolerance before infection prevented clinical disease. Finally, infection with the mimic virus at sites peripheral to the CNS induced early demyelinating disease, suggesting that the PLP139-151-specific CD4(+) T cells could be activated in the periphery and traffic to the CNS. Collectively, infection with PLP139-151 mimic encoding TMEV serves as an excellent model for molecular mimicry by inducing pathologic myelin-specific CD4(+) T cells via a natural virus infection.  相似文献   

14.
Autoreactive CD4(+) T cells exist in normal individuals and retain the capacity to initiate autoimmune disease. The current study investigates the role of CD4(+)CD25(+) T-regulatory (T(R)) cells during autoimmune disease using the CD4(+) T cell-dependent myelin oligodendrocyte glycoprotein (MOG)-specific experimental autoimmune encephalomyelitis model of multiple sclerosis. In vitro, T(R) cells effectively inhibited both the proliferation of and cytokine production by MOG(35-55)-specific Th1 cells. In vivo, adoptive transfer of T(R) cells conferred significant protection from clinical experimental autoimmune encephalomyelitis which was associated with normal activation of autoreactive Th1 cells, but an increased frequency of MOG(35-55)-specific Th2 cells and decreased CNS infiltration. Lastly, transferred T(R) cells displayed an enhanced ability to traffic to the peripheral lymph nodes and expressed increased levels of the adhesion molecules ICAM-1 and P-selectin that may promote functional interactions with target T cells. Collectively, these findings suggest that T(R) cells contribute notably to the endogenous mechanisms that regulate actively induced autoimmune disease.  相似文献   

15.
Chronic inflammation can associate with autoreactive immune responses, including CD4(+) T cell responses to self-Ags. In this paper, we show that the adipocyte-derived proinflammatory hormone leptin can affect the survival and proliferation of autoreactive CD4(+) T cells in experimental autoimmune encephalomyelitis, an animal model of human multiple sclerosis. We found that myelin olygodendrocyte glycoprotein peptide 35-55 (MOG(35-55))-specific CD4(+) T cells from C57BL/6J wild-type mice could not transfer experimental autoimmune encephalomyelitis into leptin-deficient ob/ob mice. Such a finding was associated with a reduced proliferation of the transferred MOG(35-55)-reactive CD4(+) T cells, which had a reduced degradation of the cyclin-dependent kinase inhibitor p27(kip1) and ERK1/2 phosphorylation. The transferred cells displayed reduced Th1/Th17 responses and reduced delayed-type hypersensitivity. Moreover, MOG(35-55)-reactive CD4(+) T cells in ob/ob mice underwent apoptosis that associated with a downmodulation of Bcl-2. Similar results were observed in transgenic AND-TCR- mice carrying a TCR specific for the pigeon cytochrome c 88-104 peptide. These molecular events reveal a reduced activity of the nutrient/energy-sensing AKT/mammalian target of rapamycin pathway, which can be restored in vivo by exogenous leptin replacement. These results may help to explain a link between chronic inflammation and autoimmune T cell reactivity.  相似文献   

16.
Multiple sclerosis (MS) is believed to be an autoimmune disease mediated by T cells specific for CNS Ags. MS lesions contain both CD4+ and CD8+ T lymphocytes. The contribution of CD4+ T cells to CNS autoimmune disease has been extensively studied in an animal model of MS, experimental autoimmune encephalomyelitis. However, little is known about the role of autoreactive CD8+ cytotoxic T cells in MS or experimental autoimmune encephalomyelitis. We demonstrate here that myelin basic protein (MBP) is processed in vivo by the MHC class I pathway leading to a MBP79-87/Kk complex. The recognition of this complex by MBP-specific cytotoxic T cells leads to a high degree of tolerance in vivo. This study is the first to show that the pool of self-reactive lymphocytes specific for MBP contain MHC class I-restricted T cells whose response is regulated in vivo by the induction of tolerance.  相似文献   

17.
We previously showed that transgenically expressed chimeric Ag-MHC-zeta receptors can Ag-specifically redirect T cells against other T cells. When the receptor's extracellular Ag-MHC domain engages cognate TCR on an Ag-specific T cell, its cytoplasmic zeta-chain stimulates the chimeric receptor-modified T cell (RMTC). This induces effector functions such as cytolysis and cytokine release. RMTC expressing a myelin basic protein (MBP) 89-101-IAs-zeta receptor can be used therapeutically, Ag-specifically treating murine experimental allergic encephalomyelitis (EAE) mediated by MBP89-101-specific T cells. In initial studies, isolated CD8+ RMTC were therapeutically effective whereas CD4+ RMTC were not. We re-examine here the therapeutic potential of CD4+ RMTC. We demonstrate that Th2-differentiated, though not Th1-differentiated, CD4+ MBP89-101-IAs-zeta RMTC prevent actively induced or adoptively transferred EAE, and treat EAE even after antigenic diversification of the pathologic T cell response. The Th2 RMTC both Th2-deviate autoreactive T cells and suppress autoantigen-specific T cell proliferation. IL-10 is critical for the suppressive effects. Anti-IL-10R blocks RMTC-mediated modulation of EAE and suppression of autoantigen proliferation, as well as the induction of IL-10 production by autoreactive T cells. In contrast to IL-10, IL-4 is required for IL-4 production by, and hence Th2 deviation of autoreactive T cells, but not the therapeutic activity of the RMTC. These results therefore demonstrate a novel immunotherapeutic approach for the Ag-specific treatment of autoimmune disease with RMTC. They further identify an essential role for IL-10, rather than Th2-deviation itself, in the therapeutic effectiveness of these redirected Th2 T cells.  相似文献   

18.
The presence of potentially autoreactive T cells is a necessary, but not sufficient, condition for the development of autoimmune disease. However, the relationship between T cell response and susceptibility to disease is not straightforward. In this report, we use experimental allergic encephalomyelitis as a model to demonstrate that subtle alterations of the T cell response to an encephalitogenic epitope are sufficient to cause a dramatic decrease in disease susceptibility. Transgenic expression of a fusion protein of hen egg lysozyme and an encephalitogenic peptide of myelin basic protein (MBP) residues 84-105, coexpressed with MHC class II, causes profound tolerance to hen egg lysozyme, while maintaining a near normal response to MBP. Detailed analysis of the T cell repertoire of transgenic animals using a panel of T cell hybridomas revealed a highly selective loss of one minor component of the response to the MBP84-104 region. Despite this, transgenic animals were highly resistant to experimental allergic encephalomyelitis induction with the MBP peptide, indicating that minor changes to the T cell repertoire may result in major alterations in disease susceptibility. Possible reasons for this are discussed.  相似文献   

19.
Inoculation of Lewis rats with live or attenuated (irradiated or paraformaldehyde-fixed) CD4+ encephalitogenic T cells (S1 line) protects the recipients from transferred experimental autoimmune encephalomyelitis (tEAE) induced by S1 cells. A CD8+ T lymphocyte population specifically activated against the EAE-inducing S1 cells can be readily isolated from the lymphoid organs of pretreated animals. We show, in the present study, that encephalitogenic T cell lines derived from Lewis rats differ in their ability to induce resistance against tEAE in vivo and to stimulate CD8+ cell proliferation in vitro. We also demonstrate that the S19 line of encephalitogenic T cells, in combination with myelin basic protein (MBP), can stimulate CD8+ cell proliferation in vitro. The CD8+ cells generated in this way strongly suppress MBP-specific T cell proliferation in vitro. This combined effect of T cells and MBP was also evident in vivo. Neither S19 cells nor MBP alone induced resistance against S19-mediated tEAE, rather coinjection of these cells and MBP was required. Our results suggest that resistance to EAE is mediated by distinct populations of encephalitogenic T cells that activate Ts cells through different mechanisms. In some instances, both autoreactive T cells and their relevant autoantigen(s) may be needed to activate Ts cells in vivo.  相似文献   

20.
We have used T cells bearing TCRs that are closely related in sequence as probes to detect conformational variants of peptide-MHC complexes in murine experimental autoimmune encephalomyelitis in H-2(u) mice. The N-terminal epitope of myelin basic protein (MBP) is immunodominant in this model. Our studies have primarily focused on T cell recognition of a position 4 analog of this peptide (MBP1-9[4Y]) complexed with I-A(u). Using site-directed mutagenesis, we have mapped the functionally important complementarity determining region residues of the 1934.4 TCR Valpha domain. One of the resulting mutants (Tyr(95) to alanine in CDR3alpha, Y95A) has interesting properties: relative to the parent wild-type TCR, this mutant poorly recognizes Ag complexes generated by pulsing professional APCs (PL-8 cells) with MBP1-9[4Y] while retaining recognition of MBP1-9[4Y]-pulsed unconventional APCs or insect cell-expressed complexes of I-A(u) containing tethered MBP1-9[4Y]. Insect cell expression of recombinant I-A(u) with covalently tethered class II-associated invariant chain peptide or other peptides which bind relatively weakly, followed by proteolytic cleavage of the peptide linker and replacement by MBP1-9[4Y] in vitro, results in complexes that resemble peptide-pulsed PL-8 cells. Therefore, the distinct conformers can be produced in recombinant form. T cells that can distinguish these two conformers can also be generated by the immunization of H-2(u) mice, indicating that differential recognition of the conformers is observed for responding T cells in vivo. These studies have relevance to understanding the molecular details of T cell recognition in murine experimental autoimmune encephalomyelitis. They are also of particular importance for the effective use of multimeric peptide-MHC complexes to characterize the properties of Ag-specific T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号