首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Spindle  K Wu 《Teratology》1985,32(2):213-218
Mouse blastocysts were treated with caffeine and/or benzo(a)pyrene (BP), and the effects on development and on induction of sister chromatid exchanges (SCEs) were examined. Caffeine interfered with blastocyst development in a dose-related manner. At 4 mM, the highest concentration tested, caffeine interfered with development of blastocysts to all four endpoints: hatching, trophoblast outgrowth, inner cell mass (ICM) growth, and two-layer (primary endoderm and ectoderm) differentiation of ICMs. At 2 mM, caffeine reduced the incidence of both ICM growth and differentiation but did not affect hatching or formation of trophoblast outgrowths. At 1 mM, caffeine interfered only with ICM differentiation. Cell proliferation was least sensitive to caffeine and was reduced at concentrations of greater than or equal to 2 mM. Induction of SCEs was most sensitive to caffeine exposure; an increase in SCE frequency was observed at 0.1 and 0.5 mM. When caffeine was added to cultures with BP (1 microM, a concentration that was not embryotoxic and did not induce SCEs), both embryotoxic effects and SCE frequency were increased. The enhancing effect on SCE induction was particularly marked; as little as 0.1 mM caffeine was sufficient to cause doubling of induced SCE frequencies when added to cultures with BP.  相似文献   

2.
The capacity of caffeine to induce sister chromatid exchanges (SCEs) in different cell cycle stages and the proliferation kinetics were studied. Continuous treatment with this xanthine during the whole second cycle significantly increased the baseline SCE frequency. Pulse-treatment experiments showed that the induction of SCEs by caffeine, which was dose-dependent, was restricted to the S-phase of the cell cycle without effect on G1 or G2 cells. Moreover, unlike other SCE-inducing agents, such as DNA-synthesis inhibitors and DNA-damaging agents, caffeine produced similar SCE increases in cells treated at different times throughout the S-phase. In the light of Painter's model for SCE formation and the known effects of caffeine on the DNA replication pattern, the most likely mechanism of SCE induction by caffeine is an increase in the number of DNA-replication sites.  相似文献   

3.
Cells of some excision-proficient xeroderma pigmentosum (XP) cell lines are highly sensitive to post-UV caffeine treatment in terms of sister-chromatid exchange (SCE) induction as well as cell lethality. In the present study, we conducted a detailed investigation of the enhancing effect of caffeine on SCE frequency induced by UV in excision-proficient XP cells, and obtained the following results. (1) Continuous post-UV treatment with 1 mM caffeine markedly enhances UV-induced SCEs and such enhanced SCEs occur with similar frequency during either the 1st or the 2nd cell cycle in the presence of caffeine and 5-bromodeoxyuridine (BrdUrd). (2) The high sensitivity of the cells to post-UV caffeine treatment persists for at least 2 days after UV when irradiated cells are held in either the proliferating or the nonproliferating state prior to the addition of BrdUrd. (3) Caffeine exerts its effect on cells in S phase. (4) Neither BrdUrd in the medium nor the incorporated 5-bromodeoxyuridine monophosphate (BrdUMP) in DNA plays an appreciable role in the expression of the enhancing effect of caffeine. The most likely explanation for our findings is as follows. In excision-proficient XP cells, the cause of SCE formation such as UV-induced lesions or resulting perturbations of DNA replication persists until the 2nd round or more of post-UV DNA replication. If caffeine is given as post-UV treatment, such abnormalities may be amplified, resulting in a synergistic increase in SCE frequency.  相似文献   

4.
To determine the mutual relationships between cell survival and induction of sister-chromatid exchanges (SCEs) as well as chromosomal aberrations (CAs), mutagen-induced SCEs and CAs were analyzed in an ionizing radiation-sensitive mutant (M10) and an alkylating agent-sensitive mutant (MS 1) isolated from mouse lymphoma L5178Y cells. The levels of CA induction in both mutants strictly corresponded to the sensitivity to lethal effects of mutagens, except that caffeine-induced CAs in M10 are considerably lower than those in L5178Y. The results clearly indicate that except for caffeine-induced CAs in M10, mutagen-induced lethal lesions are responsible for CA induction. In contrast, SCE induction in mutants was complicated. In M10, hypersensitive to killing by gamma-rays, methyl methanesulfonate (MMS), and 4-nitroquinoline 1-oxide (4NQO), but not sensitive to UV or caffeine, the frequency of SCEs induced by gamma-rays was barely higher than that in L5178Y, and the frequencies of MMS- and UV-induced SCEs were similar to those in L5178Y, but 4NQO- and caffeine-induced SCEs were markedly lower than those in L5178Y. MS 1, which is hypersensitive to MMS and caffeine, but not sensitive to UV or 4NQO, responded to caffeine with an enhanced frequency of SCEs and had a normal frequency of MMS-induced SCEs, but a reduced frequency of UV- and 4NQO-induced SCEs. Thus, susceptibility to SCE induction by mutagens is not necessarily correlated with sensitivity of mutants to cell killing and/or CA induction by mutagens. Furthermore, the spontaneous levels of SCEs are lower in M10 and higher in MS 1 than that in L5178Y (Tsuji et al., 1987). Based on these results, we speculate that M10 may be partially defective in the processes for the formation of SCEs caused by mutagens. On the other hand, MS 1 may modify SCE formation-related lesions induced by UV and 4NQO to some repair intermediates that do not cause SCE formation. In addition, MMS-induced lethal lesions in MS 1 may not be responsible for SCE induction whereas caffeine-induced lethal lesions are closely correlated with SCE induction. Thus, the lesions or mechanisms involved in SCE production are in part different from those responsible for cell lethality or CA production.  相似文献   

5.
The effect of nitrosocimetidine (NC) on the frequency of sister-chromatid exchanges (SCEs) in human lymphocytes has been studied. The frequency of SCEs induced by a 1-h exposure to 2.6 X 10(-4) M NC was 4-fold greater than that in the solvent control. A 72-h exposure to NC had a similar dose-related effect. We also examined the effect of the sulfhydryl compounds cysteine, cysteamine, cystamine and glutathione, the reducing agent dithionite, and vitamins C and E on the NC-induced SCEs. None of these compounds induced SCEs. Cysteine, cysteamine, and cystamine significantly reduced the number of NC-induced SCEs, and the others did not.  相似文献   

6.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

7.
Sister chromatid exchange (SCE) was measured in peripheral lymphocytes of 90 workers from 14 hospital pathology departments in Israel who were occupationally exposed to formaldehyde (FA) and of 52 unexposed workers from the administrative section of the same hospitals. The mean exposure period to FA was 15.4 years (range 1-39). The results of SCEs are expressed in two variables: (a) mean number of SCEs per chromosome and (b) proportion of high frequency cells (cells with more than eight SCEs). A high correlation was found between these two variables. The adjusted means of both SCEs variables were significantly higher among the exposed compared with that of the unexposed group (P<0.01). Adjustment was made for age, sex, smoking habits, education workers and origin. Evaluation of the influence of years of exposure on the frequency of SCEs showed that the two variables of SCEs were higher among those who were exposed to FA for 15 or more than among those with less than 15 years of exposure. Concerning levels of exposure, both variables of SCEs were the same in the low and in the high levels of exposure sub-groups. However, among the smokers, both variables of SCEs were higher in the high exposure sub-group than in the low exposure sub-group.Our finding of a significant increase of SCEs frequency in peripheral lymphocytes in pathology staff indicates a potential cytogenetic hazard due to FA exposure. We conclude that our data indicate that FA is mutagenic to humans.  相似文献   

8.
The frequency of sister chromatid exchanges (SCEs), both spontaneous and induced by UV-light, X-rays, mitomycin C and ethylmetansulphonate (EMS), has been investigated in cultured human peripheral blood lymphocytes. Besides, frequency of spontaneous and induced SCEs was studied under the action of the inhibitors of topoisomerase II, polymerase poly(ADP-ribose), and DNA repair, i. e. novobiocin, 3-metoxybenzamide, and caffeine, respectively. It is shown that the base-line SCEs in lymphocytes of the patient with xeroderma pigmentosum II (XP2LE) is dramatically higher compared to that in normal and pigmented xerodermoid cells (XP3LE). The above inhibitors of DNA synthesis and repair enhance the rate of spontaneous SCEs in normal, XP2LE and XP3LE cells. UV-, X-ray and chemical mutagens induced an increased frequency of SCEs in these cells. Simultaneous treatment with mutagenes and inhibitors of DNA synthesis and DNA repair enhanced the rate of SCEs in lymphocytes of healthy donors and in the XP3LE patient. The frequency of the XP2LE cells. Novobiocin, 3-MBA and caffeine significantly decreased the frequency of SCEs in mitomycin C- and EMS-treated XP2LE lymphocyte, which nevertheless was much higher than that in normal cells treated with the same agents.  相似文献   

9.
The effect of diethylstilboestrol-dipropionate on the frequency of SCEs and micronuclei, cytotoxicity, aneuploidy and cell proliferation rates of foetal liver and maternal bone marrow cells following exposure of pregnant mice was measured. An increase in the number of aneuploid and polyploid cells was observed in both tissues. There was no effect on micronuclei frequency, SCE frequency, or cell proliferation rate.  相似文献   

10.
The effect of theobromine (TB) and diphylline (DP) or (1,2-dihydroxy-3-propyl)theophylline on SCE rates induced in vitro by mitomycin C (MMC), and the effect of caffeine on SCE rates induced in vitro by cytosine arabinoside (Ara-C) was studied. The combined treatments with MMC plus TB or DP showed the potentiating ability of the latter drugs. Caffeine also enhanced SCEs induced by Ara-C in cultured human lymphocytes. Caffeine and adriamycin (ADR) did not act synergistically on induction of SCEs. In a combined study, in vivo and in vitro, lymphocytes taken from 2 leukemic patients who had been given chlorambucil (CBC) or Ara-C by injection 3 h before, and then treated with caffeine in vitro, were found to have synergistically increased exchange frequencies.  相似文献   

11.
Studies on the induction and persistence of ethylene oxide (EO) induced chromosomal alterations in rat bone-marrow cells and splenocytes following in vivo exposure were carried out. Rats were exposed to ethylene oxide either chronically by inhalation (50-200ppm, 4 weeks, 5 days/week, 6h/day) or acutely by intraperitoneal injection (i.p.) at dose levels of 50-100ppm.Spontaneous- and induced-frequencies of micronuclei (MN), sister-chromatid exchanges (SCEs) and chromosomal aberrations were determined in rat bone-marrow cells, and in splenocytes following in vitro mitogen stimulation. Unstable chromosomal aberrations were studied in whole genome using standard Giemsa staining technique and fluorescence in situ hybridisation using probe for chromosome #2 was employed to detect chromosome translocations.Following chronic exposure, the cytogenetic analyses were carried out at days 5 and 21 in rat splenocytes, to study the induction and persistence of sister-chromatid exchanges. Following chronic exposure, ethylene oxide was effective in inducing SCEs, and markedly cells with high frequency SCEs were observed and they in-part persisted until day 21 post-exposure. However, no significant effect was observed in rat splenocytes for induction of MN and chromosomal aberrations. Following acute exposure, both SCEs and MN were increased significantly in rat bone-marrow cells as well as splenocytes.In conclusion, this study indicates that ethylene oxide at the concentrations employed by intraperitoneal injection or inhalation in adult rats is mutagenic and can induce both SCEs and MN.  相似文献   

12.
Cell-cycle kinetics, sister-chromatid exchange (SCE) and chromosome aberrations have been studied from the skin fibroblasts of the Indian muntjac after treatment with 100 micrograms/ml of caffeine and 0.05 microgram/ml of anthramycin. The cultures were incubated for a period which was sufficient for the completion of two consecutive cell cycles and both the drugs appeared to produce a slight inhibitory effect. When anthramycin-treated cells were however post-treated with caffeine, the cells did not proceed beyond one cycle and exhibited a mitotic block. The SCE frequency in the control and the experiments with caffeine and anthramycin was 8.63, 18.32 and 34.88 per cell respectively. The SCEs were randomly distributed amongst all chromosomes unlike a non-random distribution within the X chromosomes. Caffeine and anthramycin produced only 0.5% and 3.1 cells with chromosome aberrations respectively. Potentiation of chromosome aberrations was observed when the anthramycin-treated cells were post-treated with caffeine. Caffeine potentiation presumably results from an inhibition of the cells to cycle and a failure to repair the effect of the mutagen on DNA.  相似文献   

13.
In cultured human lymphocytes chlorpromazine (CPZ) was found to induce cell division delays and to have no effect on sister-chromatid exchanges (SCEs) or on mitotic indices (MIs). CPZ induces cytotoxic effects in combination with caffeine (CAF) and alkylating agents. In combination with CAF it induced cell division delays and suppression of MIs. In combination with melphalan (MEL) and CAF, CPZ synergistically induced SCEs, caused cell division delay and suppressed MIs. In combination with chlorambucil (CBC) and CAF, CPZ produced synergism on induction of SCEs, enhanced cell division delays and reduced MIs.  相似文献   

14.
The effect of alleles of the Ah locus on the induction of sister-chromatid exchanges (SCE) was studied in C57Bl/6 and in DBA/2 mice treated twice intragastrically with benzo[a]pyrene (BP, 100 or 10 mg/kg b.w.). To measure the changes in the frequency of SCE, 2 protocols were used: in vivo in bone marrow cells after implantation of 5-bromodeoxyuridine (BrdU) tablets and in vivo/in vitro in spleen lymphocytes cultured with BrdU. On day 5 mice were killed and SCEs estimated in bone marrow cells. BP-DNA adducts in bone marrow and spleen were analyzed on day 5 after the same exposure to BP. In the spleen lymphocytes SCE frequencies were analyzed after an additional 48 h of culture. We found that at both doses of BP, the number of SCEs and BP-DNA adducts in bone marrow and in spleen cells was significantly higher in aryl hydrocarbon hydroxylase (AHH)-non-inducible (DBA/2) mice than in AHH-inducible (C57BL/6) mice. Only marginal induction of SCE was noted after the high dose of BP in C57BL/6 mice in bone marrow in vivo, whereas a highly significant increase in the frequency of SCEs was found in splenocytes in the in vivo/in vitro test. The spleen cells contained larger amounts of BP-DNA adducts and demonstrated higher absolute levels of SCEs than bone marrow cells. The sensitivity of both the in vivo/in vitro and the in vivo SCE test is high enough for assessment of Ah locus-linked differences in BP genotoxicity in mice at the prolonged time between treatment and cell preparation. The present data confirm the influence of inducibility of AHH in the intestine on the genotoxicity of BP to distal tissues after oral exposure to BP.  相似文献   

15.
Cytogenetic damage in workers exposed to ethylene oxide   总被引:1,自引:0,他引:1  
Sister-chromatid exchanges (SECs) and chromosomal aberrations (CAs) were detected in the peripheral lymphocytes of 41 sanitary workers exposed to ethylene oxide (EO) in the sterilizing units of 8 hospitals in the Venice Region. The first group (19 workers) was exposed to 10.7 +/- 4.9 ppm EO, expressed as the time-weighted average concentration for an 8-h working day (TWA/8 h conc.), and the second group (22 workers) to 0.35 +/- 0.12 ppm. Each exposed worker was paired with a control of similar age and smoking habits. A highly significant (P less than 0.001) increase in the mean frequency of SCEs was found in the higher exposure group, 14 (74%) exposed subjects having significantly increased levels of SCEs compared to their matched controls. In the lower exposure group, the increase in mean frequency of SCEs was lower, though still significant (P less than 0.05): 7 (33%) exposed subjects had higher and 1 (5%) had a lower SCE level than the matched controls. From the first group, 10 subjects, 7 of whom had increased SCE levels, were reanalysed 12-18 months after their exposure had been lowered or interrupted: in only 2 of them the SCE level was significantly decreased. A statistically significant correlation between SCE frequency and level of EO exposure (TWA/8 h conc.), as well as a multiple correlation between SCE level and EO exposure, smoking and age were found. However, no interaction could be detected between EO exposure and smoking in the induction of SCEs. In controls, SCE frequency was correlated with smoking and age. In the higher exposure group, the number of both chromatid- and chromosome-type aberrations, independent of gaps, was significantly increased, whereas in the lower exposure group only the frequency of chromosome-type aberrations, excluding gaps, was statistically higher than in controls. The level of CAs remained to a great extent unchanged in the 10 subjects re-examined at a later stage after lowering or halting exposure. Taking the group as a whole, the frequency of cells with total CAs was found to be weakly (P = 0.05) correlated with EO exposure, and was not correlated with smoking, age or SCE frequency.  相似文献   

16.
Sister-chromatid exchange (SCE) was measured in peripheral lymphocytes of 104 greenhouse farmers exposed to pesticides and 44 unexposed workers. The results of SCEs are expressed in two variables: (a) mean number of SCEs per chromosome and, (b) proportion of high frequency cells (cells with more than eight SCEs). A high correlation was found between these two variables. The adjusted means of both SCEs variables were significantly higher among the farmers compared with the unexposed group (P < 0.01). Adjustment was made for smoking, age, education, and origin.The adjusted means of both SCE variables, were significantly elevated (P < 0.05) among the farmers who prepared and applied more than 70% of the pesticides by themselves compared with those who prepared and applied less than 70% of the pesticides by themselves. Both SCEs variables were also significantly elevated (P < 0.05) among farmers who were involved in more than 7.4 sprays per year compared with those with 7.4 or less sprays per year (P < 0.05). We found a tendency towards elevation of the two variables of SCEs among those who did not use protective measures while preparing the pesticides.Evaluation of the influence of years of exposure on the frequency of SCEs showed that the two variables of SCEs were higher among those farmers who were exposed to pesticides for more than 21 years than among those with less than 21 years of exposure. The variables that had the most influence on the elevation of SCEs were self-preparation of the pesticide mixtures and the number of sprayings per year. Because the farmers used a mixture of almost 24 different chemical classes it was impossible to attribute exposure to a specific pesticide or group of pesticides to single farmers.Our finding of a significant increase of SCEs frequency in peripheral lymphocytes in greenhouse farmers indicates a potential cytogenetic hazard due to pesticides exposure.  相似文献   

17.
Culture of cells in high exogenous levels (>10–4 M) of bromodeoxyuridine (BrdUrd) or thymidine will increase the baseline sister chromatid exchange (SCE) frequency. The effect is thought to be related to the balance of the DNA precursors thymidine and deoxycytidine. Exogenous addition of deoxycytidine will reverse this effect. Single and twin SCEs were analysed in Colcemid-induced tetraploid Chinese hamster ovary cells exposed to different concentrations of BrdUrd to determine at what stage SCEs are induced by high levels of BrdUrd. In cells exposed to low concentrations of BrdUrd (10–5 M), equal numbers of SCEs were induced in each of the two cell cycles. With increasing concentrations of BrdUrd (10–4 to 2×10–4 M), SCE frequency increased in both cell cycles, but far more SCEs were induced in the second cell cycle. Deoxycytidine (2×10–4 M) reduced the frequency of SCEs primarily by reducing the frequency of SCEs induced in the second cell cycle. Treatment with 3-aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, produced effects similar to exposure to high levels of BrdUrd including inducing SCEs in the second replication cycle. This suggests a similar mechanism of action. Deoxycytidine had no effect on 3AB-induced SCEs, however, and there was no interaction between 3AB and high exogenous levels of BrdUrd in SCE induction. Thus these two agents probably act through different mechanisms.  相似文献   

18.
The effectiveness of caffeine and pyronin Y in the induction of both chromosomal aberrations and sister-chromatid exchanges (SCEs) in root meristematic cells of A. cepa was studied.The rate of SCEs proved to be increased when 5-bromo-2′-deoxyuridine- (BrdU) substituted chromosomes were allowed to replicate in thymidine (dT) for a second S period simultaneously with caffeine or pyronin Y. In contrast, only caffeine was able to induce aberrations in BrdU-substituted chromosomes, while pyronin Y seemed to be ineffective at the doses employed.  相似文献   

19.
Summary The reciprocal interchange between the chromatids of a chromosome, termed sister chromatid exchange (SCE), is considered to be one of the most sensitive and accurate cytogenetic parameters and respond to toxic chemicals at very low doses. But the response of SCE to ionizing radiation is very poor. Human lymphocytes fail to give SCE response when irradiated at G0. Probably the primary lesions induced at G0 do not remain available long enough to find expression as SCEs. Based on this assumption a schedule was developed using caffeine to demonstrate radiation induced SCEs. Following this schedule a dose-dependent increase in the frequency of radiation induced SCEs has been observed.  相似文献   

20.
Hatao Kato 《Chromosoma》1977,59(3):179-191
By taking advantage of the fact that fluorescent light (FL) induces strand breaks only in bromodeoxyuridine(BrdU)-substituted DNA, and that those breaks eventually lead to the formation of sister chromatid exchanges (SCEs), the response of SCEs to FL was studied carefully in Chinese hamster chromosomes in which, out of four DNA strands, BrdU-substitution had occurred either in one or three strands. The FL-induced SCE frequency did not differ greatly between these two types of chromosomes. However, when they were submitted to caffeine treatment, a drastic increase in the frequency was detected in the trifilarly-substituted chromosomes while a significant decrease occurred in the unifilarly-substituted chromosomes. Based on these results, a working hypothesis was developed that the SCE can arise by at least two different mechanisms, one operating at replicating points probably utilizing the machinery of DNA replication, and the other acting only in the post-replicational DNA portion, probably in a similar fashion as assumed in a general model of crossing over in the eukaryote. These dual mechanisms may account for the discrepancy encountered in the explanations of the induction of SCEs by various exogenous agents as well as spontaneous SCEs. The present study also showed that some, but clearly not all, of chromatid deletions are the outcome of the failure to complete SCEs arising through these mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号