首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以砂梨(Pyrus pyrifoliaNakai)品种今村秋(Imamuraaki)和丰水(Hosui)为材料,分别用光学显微镜和荧光显微镜观察了离体和半活体条件下微丝骨架解聚剂细胞松弛素B(cytochalasin B,CB)和稳定剂鬼笔环肽(phalloidin)对梨花粉萌发和花粉管生长的影响.结果表明:(1)低浓度(10μg/mL)鬼笔环肽能促进花粉萌发和花粉管生长,但高浓度对花粉萌发和花粉管的生长具有抑制作用;CB抑制花粉萌发和花粉管生长,且抑制效应随其浓度的增加而增强.(2)鬼笔环肽处理柱头后进行自花授粉,可明显促进自花花粉萌发和花粉管的生长,而CB处理柱头后异花授粉则抑制异花花粉萌发及其花粉管生长.可见,微丝骨架参与了梨花粉萌发和花粉管生长过程,并参与了梨自交不亲和反应的调节.  相似文献   

2.
Multiple isoforms of UDP-glucose pyrophosphorylase in rice   总被引:2,自引:0,他引:2  
Uridine diphosphate (UDP)-glucose pyrophosphorylases (UGPases, EC 2.7.7.9) are key enzymes in plant carbohydrate metabolism and cell-wall biosynthesis, catalyzing the reversible production of glucose-1-phosphate and uridine triphosphate from UDP-glucose and pyrophosphate. In the study presented here, two-dimensional gel electrophoresis followed by peptide sequencing analysis using nanospray electrospray ionization tandem mass spectrometry showed that rice ( Oryza sativa L.) UGPase undergoes N-terminal acetylation, which may be a conserved modification of plant UGPases. We also obtained indications, using two-dimensional gel electrophoresis in combination with western blot analysis, that multiple isoforms of UGPase are present in rice in vivo and are regulated tissue-specifically. The rice genome contains two homologous UGPase genes, OsUgp1 and OsUgp2 . We present evidence that both OsUgp1 and OsUgp2 are ubiquitously expressed throughout rice development, and that OsUgp1 is expressed at much higher levels than OsUgp2 . In accordance with the gene expression patterns, the UGPase isoform derived from the OsUgp1 gene predominated in various rice tissues and exhibited qualitative variations (position shifts and presence/absence) between rice varieties B5 and Taichung native 1 (TN1). Our results demonstrate that these qualitative variations are attributable to a single amino acid substitution of Asp-462 in B5 by His in TN1, corresponding to the allelic difference in the OsUgp1 gene between B5 and TN1.  相似文献   

3.
UDP-glucose pyrophosphorylase (UGPase) is involved in the production of UDP-glucose, a key precursor to polysaccharide synthesis in all organisms. UGPase activity has recently been proposed to be regulated by oligomerization, with monomer as the active species. In the present study, we investigated factors affecting oligomerization status of the enzyme, using purified recombinant barley UGPase. Incubation of wild-type (wt) UGPase with phosphate or Tris buffers promoted oligomerization, whereas Mops and Hepes completely dissociated the oligomers to monomers (the active form). Similar buffer effects were observed for KK127-128LL and C99S mutants of UGPase; however, the buffers had a relatively small effect on the oligomerization status of the LIV135-137NIN mutant, impaired in deoligomerization ability and showing only 6-9% activity of the wt. Buffer composition had no effect on UGPase activity at UGPase protein concentrations below ca. 20 ng/ml. However, at higher protein concentration the activity in Tris, but not Mops nor Hepes, underestimated the amount of the enzyme. The data suggest that oligomerization status of UGPase can be controlled by subtle changes in an immediate environment (buffers) and by protein dilution. The evidence is discussed in relation to our recent model of UGPase structure/function, and with respect to earlier reports on the oligomeric integrity/activity of UGPases from eukaryotic tissues.  相似文献   

4.
UDP-glucose pyrophosphorylases (UGPase; EC 2.7.7.9) catalyze the conversion of UTP and glucose-1-phosphate to UDP-glucose and pyrophosphate and vice versa. Prokaryotic UGPases are distinct from their eukaryotic counterparts and are considered appropriate targets for the development of novel antibacterial agents since their product, UDP-glucose, is indispensable for the biosynthesis of virulence factors such as lipopolysaccharides and capsular polysaccharides. In this study, the crystal structures of UGPase from Helicobacter pylori (HpUGPase) were determined in apo- and UDP-glucose/Mg2+-bound forms at 2.9 Å and 2.3 Å resolutions, respectively. HpUGPase is a homotetramer and its active site is located in a deep pocket of each subunit. Magnesium ion is coordinated by Asp130, two oxygen atoms of phosphoryl groups, and three water molecules with octahedral geometry. Isothermal titration calorimetry analyses demonstrated that Mg2+ ion plays a key role in the enzymatic activity of UGPase by enhancing the binding of UGPase to UTP or UDP-glucose, suggesting that this reaction is catalyzed by an ordered sequential Bi Bi mechanism. Furthermore, the crystal structure explains the specificity for uracil bases. The current structural study combined with functional analyses provides essential information for understanding the reaction mechanism of bacterial UGPases, as well as a platform for the development of novel antibacterial agents.  相似文献   

5.
6.
An optimized coupled enzyme assay for UDP-glucose pyrophosphorylase (EC 2.7.7.9) using UDP-glucose dehydrogenase (EC 1.1.1.22) is presented. This optimized assay was developed by a detailed investigation of the kinetics of the UDP-glucose dehydrogenase reaction. In addition the data provide a basis for the enzymatic synthesis of UDP-glucuronic acid. The results demonstrate that the two binding sites of the dehydrogenase differ since a different modulation of the enzyme activity and stability is observed after preincubation with UDP-glucose or NAD+ at various pH values. This is of general interest for the preparation of assay mixtures where UDP-glucose dehydrogenase is used as an auxiliary enzyme.  相似文献   

7.
Amoebiasis is an intestinal infection caused by the human pathogen Entamoeba histolytica and representing the third leading cause of death by parasites in the world. Host-parasite interactions mainly involve anchored glycoconjugates localized in the surface of the parasitic cell. In protozoa, synthesis of structural oligo- and polysaccharides occurs via UDP-glucose, generated in a reaction catalyzed by UDP-glucose pyrophosphorylase. We report the molecular cloning of the gene coding for this enzyme from genomic DNA of E. histolytica and its recombinant expression in Escherichia coli cells. The purified enzyme was kinetically characterized, catalyzing UDP-glucose synthesis and pyrophosphorolysis with Vmax values of 95 U/mg and 3 U/mg, respectively, and affinity for substrates comparable to those found for the enzyme from other sources. Enzyme activity was affected by redox modification of thiol groups. Different oxidants, including diamide, hydrogen peroxide and sodium nitroprusside inactivated the enzyme. The process was completely reverted by reducing agents, mainly cysteine, dithiothreitol, and thioredoxin. Characterization of the enzyme mutants C94S, C108S, C191S, C354S, C378S, C108/378S, M106S and M106C supported a molecular mechanism for the redox regulation. Molecular modeling confirmed the role of specific cysteine and methionine residues as targets for redox modification in the entamoebic enzyme. Our results suggest that UDP-glucose pyrophosphorylase is a regulated enzyme in E. histolytica. Interestingly, results strongly agree with the occurrence of a physiological redox mechanism modulating enzyme activity, which would critically affect carbohydrate metabolism in the protozoon.  相似文献   

8.
UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides.  相似文献   

9.
10.
The structure of the UDP-glucose pyrophosphorylase encoded by Arabidopsis thaliana gene At3g03250 has been solved to a nominal resolution of 1.86 Angstroms. In addition, the structure has been solved in the presence of the substrates/products UTP and UDP-glucose to nominal resolutions of 1.64 Angstroms and 1.85 Angstroms. The three structures revealed a catalytic domain similar to that of other nucleotidyl-glucose pyrophosphorylases with a carboxy-terminal beta-helix domain in a unique orientation. Conformational changes are observed between the native and substrate-bound complexes. The nucleotide-binding loop and the carboxy-terminal domain, including the suspected catalytically important Lys360, move in and out of the active site in a concerted fashion. TLS refinement was employed initially to model conformational heterogeneity in the UDP-glucose complex followed by the use of multiconformer refinement for the entire molecule. Normal mode analysis generated atomic displacement predictions in good agreement in magnitude and direction with the observed conformational changes and anisotropic displacement parameters generated by TLS refinement. The structures and the observed dynamic changes provide insight into the ordered mechanism of this enzyme and previously described oligomerization effects on catalytic activity.  相似文献   

11.
12.
The development of single nucleotide polymorphism (SNP) markers in Japanese pear (Pyrus pyrifolia Nakai) offers the opportunity to use DNA markers for marker-assisted selection in breeding programs because of their high abundance, codominant inheritance, and potential for automated high-throughput analysis. We developed a 1,536-SNP bead array without a reference genome sequence from more than 44,000 base changes on the basis of a large-scale expressed sequence tag (EST) analysis combined with 454 genome sequencing data of Japanese pear ‘Housui’. Among the 1,536 SNPs on the array, 756 SNPs were genotyped, and 609 SNP loci were mapped to linkage groups on a genetic linkage map of ‘Housui’, based on progeny of an interspecific cross between European pear (Pyrus communis L.) ‘Bartlett’ and ‘Housui’. The newly constructed genetic linkage map consists of 951 loci, comprising 609 new SNPs, 110 pear genomic simple sequence repeats (SSRs), 25 pear EST–SSRs, 127 apple SSRs, 61 pear SNPs identified by the “potential intron polymorphism” method, and 19 other loci. The map covers 22 linkage groups spanning 1341.9 cM with an average distance of 1.41 cM between markers and is anchored to reference genetic linkage maps of European pears and apples. A total of 514 contigs containing mapped SNP loci showed significant similarity to known proteins by functional annotation analysis.  相似文献   

13.
培养基组分及pH值对梨花粉萌发和花粉管生长的影响   总被引:54,自引:7,他引:54  
采用花粉液体培养法研究不同培养基组分和pH值对梨花粉萌发和花粉管生长影响.结果表明:培养基内硼酸、氯化钙、PEG-4000、蔗糖、葡萄糖、麦芽糖、山梨醇、果糖在一定浓度范围内,对花粉萌发及花粉管生长起促进作用,但超过一定浓度时起抑制作用;最适的培养基组分为:30mmol/LMES、0.01%硼酸、0.03%CaCl2·2H2O、15%PEG-4000、5%果糖 或5%山梨醇、10%蔗糖 ,最适的pH值为6.5.在该培养基内梨花粉萌发率约为59.2%,花粉管生长长度为966.3μm.  相似文献   

14.
Uridine diphosphate-glucose pyrophosphorylase (UGPase) represents a ubiquitous enzyme, which catalyzes the formation of UDP-glucose, a key metabolite of the carbohydrate pathways of all organisms. In the protozoan parasite Leishmania major, which causes a broad spectrum of diseases and is transmitted to humans by sand fly vectors, UGPase represents a virulence factor because of its requirement for the synthesis of cell surface glycoconjugates. Here we present the crystal structures of the L. major UGPase in its uncomplexed apo form (open conformation) and in complex with UDP-glucose (closed conformation). The UGPase consists of three distinct domains. The N-terminal domain exhibits species-specific differences in length, which might permit distinct regulation mechanisms. The central catalytic domain resembles a Rossmann-fold and contains key residues that are conserved in many nucleotidyltransferases. The C-terminal domain forms a left-handed parallel beta-helix (LbetaH), which represents a rarely observed structural element. The presented structures together with mutagenesis analyses provide a basis for a detailed analysis of the catalytic mechanism and for the design of species-specific UGPase inhibitors.  相似文献   

15.
16.
17.
The UDP-glucose pyrophosphorylase of Streptococcus pneumoniae (GalUSpn) is absolutely required for the biosynthesis of capsular polysaccharide, the sine qua non virulence factor of pneumococcus. Since the eukaryotic enzymes are completely unrelated to their prokaryotic counterparts, we propose that the GalU enzyme is a critical target to fight the pneumococcal disease. A recombinant GalUSpn was overexpressed and purified. An enzymatic assay that is rapid, sensitive and easy to perform was developed. This assay was appropriate for screening chemical libraries for searching GalU inhibitors. This work represents a fundamental step in the exploration of novel antipneumococcal drugs.  相似文献   

18.
To better understand the pathophysiology of galactose-1-phosphate uridyltransferase (GALT) deficiency in humans, we studied the mechanisms by which a GALT-deficient yeast survived on galactose medium. Under normal conditions, GALT-deficient yeast cannot grow in medium that contains 0.2% galactose as the sole carbohydrate, a phenotype of Gal(-). We isolated revertants from a GALT-deficient yeast by direct selection for growth in galactose, a phenotype of Gal(+). Comparison of gene expression profiles among wild-type and revertant strains on galactose medium revealed that the revertant down-regulated genes encoding enzymes including galactokinase, galactose permease, and UDP-galactose-4-epimerase (the GAL regulon). By contrast, the revertant strain up-regulated the gene for UDP-glucose pyrophosphorylase, UGP1. There was reduced accumulation of galactose-1-phosphate in the galactose-grown revertant cells when compared to the GALT-deficient parent cells. In vitro biochemical analysis showed that UDP-glucose pyrophosphorylase had bifunctional properties and could catalyze the conversion of galactose-1-phosphate to UDP-galactose in the presence of UTP. To test if augmented expression of this gene could produce a Gal(+) phenotype in the GALT-deficient parent cells, we overexpressed the yeast UGP1 and the human homolog, hUGP2 in the mutant strain. The Gal(-) yeast transformed with either UGP1 or hUGP2 regained their ability to grow on galactose. We conclude that revertant can grow on galactose medium by reducing the accumulation of toxic precursors through down-regulation of the GAL regulon and up-regulation of the UGP1 gene. We speculate that increased expression of hUGP2 in humans could alleviate poor outcomes in humans with classic galactosemia.  相似文献   

19.
The regulation of glucuronidation during hypoxia was studied in isolated hepatocytes by analysing the dependence of acetaminophen glucuronidation rate on the intracellular concentrations of UTP, glucose 1-phosphate, UDP-glucose and UDP-glucuronic acid. The steady-state concentrations of these metabolites in cells from fed and starved rats were altered by exposure to various hypoxic O2 concentrations and by adding exogenous glucose. Changes in glucuronidation rate under all conditions were explained in terms of the concentrations of the substrates for UDP-glucose pyrophosphorylase, i.e. UTP and glucose 1-phosphate. Steady-state rates for the UDP-glucose pyrophosphorylase reaction, calculated by using published kinetic constants and measured glucose 1-phosphate and UTP concentrations, were in agreement with the measured glucuronidation rates. Thus the UDP-glucose pyrophosphorylase reaction is the key regulatory site for drug glucuronidation during hypoxia. Control at this site indicates that glucuronidation in vivo may be generally depressed in pathological conditions involving hypoxia and energy (calorie) malnutrition.  相似文献   

20.
Pear (Pyrus pyrifolia L.) possesses an S-RNase-based gametophytic self-incompatibility (GSI) system and S-RNase, the self-incompatibility (SI) determinant in the pistil, has also been implicated in the rejection of self-pollen and genetically identical pollen. We have demonstrated that S-RNase depolymerises actin cytoskeleton, triggers mitochondrial alteration and DNA degradation in the incompatible pollen tube, which indicates programmed cell death (PCD) may occur in SI response of Pyrus pyrifolia. Recently, we have identified that S-RNase specifically disrupted tip-localized reactive oxygen species (ROS) of incompatible pollen tube via arrest of ROS formation in mitochondria and cell walls in Pyrus pyrifolia. Furthermore, tip-localized ROS disruption not only decreased the Ca2+ current and depolymerised the actin cytoskeleton, but it also induced nuclear DNA degradation in the pollen tube. The results mentioned above indicate that a cascade signal pathway may occur in SI of Pyrus pyrifolia and PCD is used to terminate the incompatible pollen tubes growth. In this addendum, we review the cascade signal pathway of Pyrus pyrifolia SI.Key words: S-RNase, programmed cell death, reactive oxygen species, actin cytoskeleton, Ca2+ current, nuclear DNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号