首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike most receptors, Notch serves as both the receiver and direct transducer of signaling events. Activation can be mediated by one of five membrane-bound ligands of either the Delta-like (-1, -2, -4) or Jagged/Serrate (-1, -2) families. Alternatively, dissociation of the Notch heterodimer with consequent activation can also be mediated experimentally by calcium chelators or by mutations that destabilize the Notch1 heterodimer, such as in the human disease T cell acute lymphoblastic leukemia. Here we show that MAGP-2, a protein present on microfibrils, can also interact with the EGF-like repeats of Notch1. Co-expression of MAGP-2 with Notch1 leads to both cell surface release of the Notch1 extracellular domain and subsequent activation of Notch signaling. Moreover, we demonstrate that the C-terminal domain of MAGP-2 is required for binding and activation of Notch1. Based on the high level of homology, we predicted and further showed that MAGP-1 can also bind to Notch1, cause the release of the extracellular domain, and activate signaling. Notch1 extracellular domain release induced by MAGP-2 is dependent on formation of the Notch1 heterodimer by a furin-like cleavage, but does not require the subsequent ADAM metalloprotease cleavage necessary for production of the Notch signaling fragment. Together these results demonstrate for the first time that the microfibrillar proteins MAGP-1 and MAGP-2 can function outside of their role in elastic fibers to activate a cellular signaling pathway.  相似文献   

2.
3.
The Delta/Serrate/LAG-2 (DSL) domain-containing proteins, Delta1, Jagged1, and Jagged2, are considered to be ligands for Notch receptors. However, the physical interaction between the three DSL proteins and respective Notch receptors remained largely unknown. In this study, we investigated this issue through the targeting of Notch1 and Notch3 in two experimental systems using fusion proteins comprising their extracellular portions. Cell-binding assays showed that soluble forms of Notch1 and Notch3 proteins physically bound to the three DSL proteins on the cell surface. In solid-phase binding assays using immobilized soluble Notch1 and Notch3 proteins, it was revealed that each DSL protein directly bound to the soluble Notch proteins with different affinities. All interactions between the DSL proteins and soluble Notch proteins were dependent on Ca(2+). Taken together, these results suggest that Delta1, Jagged1, and Jagged2 are ligands for Notch1 and Notch3 receptors.  相似文献   

4.
5.
Proteins encoded by the fringe family of genes are required to modulate Notch signalling in a wide range of developmental contexts. Using a cell co-culture assay, we find that mammalian Lunatic fringe (Lfng) inhibits Jagged1-mediated signalling and potentiates Delta1-mediated signalling through Notch1. Lfng localizes to the Golgi, and Lfng-dependent modulation of Notch signalling requires both expression of Lfng in the Notch-responsive cell and the Notch extracellular domain. Lfng does not prevent binding of soluble Jagged1 or Delta1 to Notch1-expressing cells. Lfng potentiates both Jagged1- and Delta1-mediated signalling via Notch2, in contrast to its actions with Notch1. Our data suggest that Fringe-dependent differential modulation of the interaction of Delta/Serrate/Lag2 (DSL) ligands with their Notch receptors is likely to have a significant role in the combinatorial repertoire of Notch signalling in mammals.  相似文献   

6.
The Delta/Serrate/LAG-2 (DSL) domain containing proteins are considered to be ligands for Notch receptors. However, the physical interaction between DSL proteins and Notch receptors is poorly understood. In this study, we cloned a cDNA for mouse Jagged1 (mJagged1). To identify the receptor interacting with mJagged1 and to gain insight into its binding characteristics, we established two experimental systems using fusion proteins comprising various extracellular parts of mJagged1, a "cell" binding assay and a "solid-phase" binding assay. mJagged1 physically bound to mouse Notch2 (mNotch2) on the cell surface and to a purified extracellular portion of mNotch2, respectively, in a Ca(2+)-dependent manner. Scatchard analysis of mJagged1 binding to BaF3 cells and to the soluble Notch2 protein demonstrated dissociation constants of 0.4 and 0.7 nM, respectively, and that the number of mJagged1-binding sites on BaF3 is 5,548 per cell. Furthermore, deletion mutant analyses showed that the DSL domain of mJagged1 is a minimal binding unit and is indispensable for binding to mNotch2. The epidermal growth factor-like repeats of mJagged1 modulate the affinity of the interaction, with the first and second repeats playing a major role. Finally, solid-phase binding assay showed that Jagged1 binds to Notch1 and Notch3 in addition to Notch2, suggesting that mJagged1 is a ligand for multiple Notch receptors.  相似文献   

7.
Three mammalian fringe proteins are implicated in controlling Notch activation by Delta/Serrate/Lag2 ligands during tissue boundary formation. It was proved recently that they are glycosyltransferases that initiate elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats in the extracellular domain of Notch molecules. Here we demonstrate the existence of functional diversity among the mammalian fringe proteins. Although both manic fringe (mFng) and lunatic fringe (lFng) decreased the binding of Jagged1 to Notch2 and not that of Delta1, the decrease by mFng was greater in degree than that by lFng. We also found that both fringe proteins reduced Jagged1-triggered Notch2 signaling, whereas neither affected Delta1-triggered Notch2 signaling. However, the decrease in Jagged1-triggered Notch2 signaling by mFng was again greater than that by lFng. Furthermore, we observed that each fringe protein acted on a different site of the extracellular region of Notch2. Taking these findings together, we propose that the difference in modulatory function of multiple fringe proteins may result from the distinct amino acid sequence specificity targeted by these glycosyltransferases.  相似文献   

8.
Functional involvement of the Notch pathway in osteoblastic differentiation has been previously investigated using the truncated intracellular domain, which mimics Notch signaling by interacting with the DNA-binding protein CBF-1. However, it is unclear whether Notch ligands Delta1 and Jagged1 also induce an identical cellular response in osteoblastic differentiation. We have shown that both Delta1 and Jagged1 were expressed concomitantly with Notch1 in maturating osteoblastic cells during bone regeneration and that overexpressed and immobilized recombinant Delta1 and Jagged1 alone did not alter the differentiated state of MC3T3-E1 and C2C12 cells. However, they augmented bone morphogenetic protein-2 (BMP2)-induced alkaline phosphatase activity and the expression of several differentiation markers, except for osteocalcin, and ultimately enhanced calcified nodule and in vivo ectopic bone formation of MC3T3-E1. In addition, both ligands transmitted signal through the CBF-1-dependent pathway and stimulated the expression of HES-1, a direct target of Notch pathway. To test the necessity of Notch signaling in BMP2-induced differentiation, Notch signaling was inhibited by the dominant negative extracellular domain of Notch1, specific inhibitor, or small interference RNA. These treatments decreased alkaline phosphatase activity as well as the expression of other differentiation markers and inhibited the promoter activity of Id-1, a target gene of the BMP pathway. These results indicate the functional redundancy between Delta1 and Jagged1 in osteoblastic differentiation whereby Delta1/Jagged1-activated Notch1 enhances BMP2-induced differentiation through the identical signaling pathway. Furthermore, our data also suggest that functional Notch signaling is essential not only for BMP2-induced osteoblast differentiation but also for BMP signaling itself.  相似文献   

9.
Elastic fibers are composed of the protein elastin and a network of 10-12 nm microfibrils. The microfibrillar proteins include, among others, the fibrillins and microfibril-associated glycoproteins-1 and -2 (MAGP-1 and MAGP-2). Little is known about how microfibrillar proteins interact to support fiber assembly. We used the C-terminal half of MAGP-2 in a yeast two-hybrid library screen to identify relevant ligands. Six of 13 positive clones encoded known microfibrillar proteins, including fibrillin-1 and -2. Deletion analysis of partial fibrillin-1 and -2 clones revealed a calcium-binding epidermal growth factor repeat-containing region near the C terminus responsible for binding. This region is distinct from the region of fibrillin-1 reported by others to bind MAGP-1. The MAGP-2 bait was unable to interact productively with other epidermal growth factor repeats in fibrillin-1, demonstrating specificity of the interaction. Deletion analysis of the MAGP-2 bait demonstrated that binding occurred in a core region containing 48% identity and 7 conserved cysteine residues with MAGP-1. Immunoprecipitation of MAGP-2 from transfected COS-7 cells resulted in the coprecipitation of fibrillin. These results demonstrate that MAGP-2 specifically interacts with fibrillin-1 and -2 and suggest that MAGP-2 may help regulate microfibrillar assembly. The results also demonstrate the utility of the yeast two-hybrid system to study protein-protein interactions of the extracellular matrix.  相似文献   

10.
Using yeast two-hybrid, ligand blotting, and solid phase binding assays, we have shown that microfibril-associated glycoprotein-1 (MAGP-1) interacts with the 8-cysteine motif of fibrillin-2 encoded by exon 24. Binding to this sequence was demonstrated for full-length MAGP-1 as well as for the MAGP-1 matrix-binding domain encoded by exons 7 and 8. The matrix-binding domain, but not the full-length protein, also bound to regions of fibrillin-2 defined by exons 16 and 17, exon 20, and exons 23 and 24. Interestingly, no binding was detected to sequences near the N or C terminus where MAGP-1 and MAGP-2, respectively, were shown to interact with fibrillin-1. The localization of MAGP-1 binding to the 8-Cys domain encoded by exon 24 suggests that the bead structure of microfibrils consists of exon 24 and portions of the central region of fibrillin-2. Exon 24 in fibrillin lies in the region of the molecule where mutations produce the most severe phenotypes associated with Marfan syndrome (fibrillin-1) and congenital contractural arachnodactyly (fibrillin-2). It is possible that these mutations alter the ability of fibrillin to bind MAGP-1, which may contribute to the severity of the disease.  相似文献   

11.
Notch signaling is critical for cell fate decisions during development. Caenorhabditis elegans and vertebrate Notch ligands are more diverse than classical Drosophila Notch ligands, suggesting possible functional complexities. Here, we describe a developmental role in Notch signaling for OSM-11, which has been previously implicated in defecation and osmotic resistance in C. elegans. We find that complete loss of OSM-11 causes defects in vulval precursor cell (VPC) fate specification during vulval development consistent with decreased Notch signaling. OSM-11 is a secreted, diffusible protein that, like previously described C. elegans Delta, Serrate, and LAG-2 (DSL) ligands, can interact with the lineage defective-12 (LIN-12) Notch receptor extracellular domain. Additionally, OSM-11 and similar C. elegans proteins share a common motif with Notch ligands from other species in a sequence defined here as the Delta and OSM-11 (DOS) motif. osm-11 loss-of-function defects in vulval development are exacerbated by loss of other DOS-motif genes or by loss of the Notch ligand DSL-1, suggesting that DOS-motif and DSL proteins act together to activate Notch signaling in vivo. The mammalian DOS-motif protein Deltalike1 (DLK1) can substitute for OSM-11 in C. elegans development, suggesting that DOS-motif function is conserved across species. We hypothesize that C. elegans OSM-11 and homologous proteins act as coactivators for Notch receptors, allowing precise regulation of Notch receptor signaling in developmental programs in both vertebrates and invertebrates.  相似文献   

12.
Notch is a single-pass transmembrane receptor protein which is composed of a short extracellular region, a single-pass transmembrane domain and a small intracellular region. Notch ligand like Delta, member of the DSL protein family, is also single-pass transmembrane protein. It has been demonstrated that of the 36 EGF repeats of Notch, 11th and 12th are sufficient to mediate interactions with Delta. Crystal structure of mammalian Notch extracellular ligand binding domain contains 11 and 12 EGF-like repeats. Here a portion of the Delta protein of Drosophila, known to interact with Notch extracellular domain (ECD) has been modeled using homology modeling. The structure of the Delta-Notch complex was subsequently modeled by protein docking method using GRAMM. MD simulations of the modeled structures were performed. The structure for Delta-Notch complex has been proposed based on interaction energy parameter and planarity studies.  相似文献   

13.
Elastic system fibers consist of microfibrils and tropoelastin. During development, microfibrils act as a template on which tropoelastin is deposited. Microfibril-associated glycoprotein-1 (MAGP-1) and fibrillin-2, the major components of microfibrils, provide the likely template for tropoelastin deposition. In this study, we used the RNA interference (RNAi) technique to establish MAGP-1 and fibrillin-2 gene-specific knock-downs individually in elastin-producing cells (human gingival fibroblasts). We then examined the extracellular deposition of tropoelastin by western blotting. These two genes were specifically suppressed to < 30% of the control level, and this was responsible for the diminution of tropoelastin deposition. An immunofluorescence study also confirmed that RNAi-mediated down-regulation of MAGP-1 or fibrillin-2 led to the loss of tropoelastin immunoreactivity. These results suggest that MAGP-1 and fibrillin-2 are, directly or indirectly, associated with the extracellular deposition of tropoelastin during elastic fiber formation in human gingival fibroblasts in vitro.  相似文献   

14.
15.
MAGP-1 and fibrillin-1, two protein components of extracellular microfibrils, were shown by immunoprecipitation studies to interact with the chondroitin sulfate proteoglycan decorin in the medium of cultured fetal bovine chondrocytes. Decorin interacted with each protein individually and with both proteins together to form a ternary complex. Expression of truncated fibrillin-1 proteins in Chinese hamster ovary cells localized proteoglycan binding to an amino-terminal region near the proline-rich domain. A spatially analogous fibrillin-2 truncated protein did not coprecipitate the same sulfated molecule, suggesting that chondroitin sulfate proteoglycan binding in this region is specific for fibrillin-1. An interaction between fibrillin and MAGP-1 was also observed under culture conditions that abrogated decorin secretion, suggesting that the two microfibrillar proteins can associate in the absence of the proteoglycan. Sulfation of matrix proteins is important for elastic fiber assembly because inhibition of sulfation was shown to prevent microfibrillar protein incorporation into the extracellular matrix of cultured cells.  相似文献   

16.
The critical contribution of the Notch signaling pathway to vascular morphogenesis has been underscored by loss-of-function studies in mouse and zebrafish. Nonetheless, a comprehensive understanding as to how this signaling system influences the formation of blood vessels at the cellular and molecular level is far from reached. Here, we provide a detailed analysis of the distribution of active Notch1 in relation to its DSL (Delta, Serrate, Lag2) ligands, Jagged1, Delta-like1, and Delta-like4, during progressive stages of vascular morphogenesis and maturation. Important differences in the cellular distribution of Notch ligands were found. Jagged1 (Jag1) was detected in "stalk cells" of the leading vasculature and at arterial branch points, a site where Delta-like4 (Dll4) was clearly absent. Dll4 was the only ligand expressed in "tip cells" at the end of the growing vascular sprouts. It was also present in stalk cells, capillaries, arterial endothelium, and in mural cells of mature arteries in a homogenous manner. Delta-like1 (Dll1) was observed in both arteries and veins of the developing network, but was also excluded from mature arterial branch points. These findings support alternative and distinct roles for Notch ligands during the angiogenic process.  相似文献   

17.
The Notch family genes encode single-pass transmembrane proteins which function in a variety of cell fate specifications in invertebrates and vertebrates. In Xenopus primary neurogenesis, the Notch ligands, X-Delta-1 and X-Serrate-1, mediate Notch signaling and regulate cell differentiation. In the present study, we examined the role of the Serrate-specific cysteine-rich (CR) region in the primary neurogenesis of Xenopus embryos. The ligand constructs containing the DSL (Delta/Serrate/Lag-2) domain in the extracellular region caused a reduction in primary neurons, whereas the DSL-deleted form of X-Delta-1 resulted in the overproduction of primary neurons. However, the DSL-deleted form of X-Serrate-1 or the construct containing only the CR region in the extracellular domain (SerCR) reduced the number of primary neurons. In contrast, the CR-deleted form of X-Serrate-1 (SerACR) lost activity as a Notch ligand, regardless of the presence of the DSL domain within the extracellular domain. Overexpression of X-Delta-1 and X-Serrate-1 strongly induced the expression of Xenopus ESR-1 (XESR-1), a gene related to Drosophila Enhancer of split. SerCR alone also moderately induced the expression of XESR-1, but the SerACR form did not induce this expression. Co-injection of X-Notch-1deltaICD, which deletes the intracellular domain (ICD), with SerCR suppressed a neurogenic phenotype, although co-injection of X-Su(H)1DBM with SerCR did not, indicating that SerCR affects primary neurogenesis through the Notch/Su(H) pathway. These results suggestthatthe CR region of Xenopus Serrate is required for the activation of Notch signaling and cell fate specification in primary neurogenesis.  相似文献   

18.
Fringe O-fucose-beta1,3-N-acetylglucosaminyltransferases modulate Notch signaling by potentiating signaling induced by Delta-like ligands, while inhibiting signaling induced by Serrate/Jagged1 ligands. Based on binding studies, the differential effects of Drosophila fringe (DFng) on Notch signaling are thought to result from alterations in Notch glycosylation that enhance binding of Delta to Notch but reduce Serrate binding. Here, we report that expression of mammalian fringe proteins (Lunatic [LFng], Manic [MFng], or Radical [RFng] Fringe) increased Delta1 binding and activation of Notch1 signaling in 293T and NIH 3T3 cells. Although Jagged1-induced signaling was suppressed by LFng and MFng, RFng enhanced signaling induced by either Delta1 or Jagged1, underscoring the diversity of mammalian fringe glycosyltransferases in regulating signaling downstream of different ligand-receptor combinations. Interestingly, suppression of Jagged1-induced Notch1 signaling did not correlate with changes in Jagged1 binding as found for Delta1. Our data support the idea that fringe glycosylation increases Delta1 binding to potentiate signaling, but we propose that although fringe glycosylation does not reduce Jagged1 binding to Notch1, the resultant ligand-receptor interactions do not effectively promote Notch1 proteolysis required for activation of downstream signaling events.  相似文献   

19.
20.
Recent data have expanded our understanding of Notch signalling by identifying a C2 domain at the N‐terminus of Notch ligands, which has both lipid‐ and receptor‐binding properties. We present novel structures of human ligands Jagged2 and Delta‐like4 and human Notch2, together with functional assays, which suggest that ligand‐mediated coupling of membrane recognition and Notch binding is likely to be critical in establishing the optimal context for Notch signalling. Comparisons between the Jagged and Delta family show a huge diversity in the structures of the loops at the apex of the C2 domain implicated in membrane recognition and Jagged1 missense mutations, which affect these loops and are associated with extrahepatic biliary atresia, lead to a loss of membrane recognition, but do not alter Notch binding. Taken together, these data suggest that C2 domain binding to membranes is an important element in tuning ligand‐dependent Notch signalling in different physiological contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号