首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Both insulin and IGF–1 receptors are present in intestinal mucosal cells, although their role in this tissue is unclear. We have characterized these receptors in a human adenocarcinoma cell line, Caco-2, and examined their role in the regulation of glucose transport and absorption in these cells. The Caco-2 cells demonstrated specific insulin and IGF-1 receptors. They also bound cytochalasin B, suggesting the presence of a glucose transporter-like protein. When grown on membranes, the Caco-2 cells formed columnar, bipolar cells with tight junctions. The monolayer selectively transported D-glucose, and methyl-D-glucose, with complete exclusion of L-glucose, D-mannitol and inulin. The absorption of glucose across the monolayer occurred via a Na+/glucose cotransporter, as indicated by a change in short circuit current after addition of glucose to the apical membrane. When examined under several conditions, neither insulin nor IGF-1 had an affect on the transport of glucose across the Caco-2 monolayer, nor the production of lactate by the cells. It is concluded that the insulin and IGF-1 receptors of Caco-2 cells do not regulate glucose transport.  相似文献   

2.
Degim Z  Unal N  Eşsiz D  Abbasoglu U 《Life sciences》2004,75(23):2819-2827
The aim of the study was to determine the penetration properties of various insulin containing liposome formulations through Caco-2 cell monolayer and to compare the in vitro test results with in vivo tests. The effect of sodium taurocholate as a penetration enhancer when it was added to the liposome formulation was also investigated. In vitro permeation experiments were performed in diffusion cells with the Caco-2 cell monolayer used as the membrane. Permeability values of various insulin containing liposome formulations through Caco-2 cells were determined (log k(insulin-solution) = -2.217 +/- 0.0723 cm.h(-1), log k(insulin-liposome) = -2.141 +/- 0.0625 cm.h(-1), log k(insulin-sodium tauroholate liposome)= -1.952 +/- 0.0623 cm.h(-1)). In vivo tests were performed in mice. Formulations were administered orally and blood glucose levels were determined and penetrations were compared with the Caco-2 cell experiment results. In conclusion, the permeability of insulin was increased across Caco-2 cell monolayer when the liposome sodium taurocholate (NaTC) formulation was used. The oral administration of insulin and NaTC incorporated liposomes significantly decreased blood glucose levels. Furthermore, it was shown that a high in vitro/in vivo correlation was observed using the Caco-2 cell monolayer model.  相似文献   

3.

Objectives

Caco-2 monolayers are one of the most widely used in vitro models for prediction of intestinal permeability of therapeutic molecules. However, the conventional Caco-2 monolayer model has several drawbacks including labor-intensive culture process, unphysiological growth conditions, lack of reproducibility and limited throughput. Here, we report on the use of 3-day Caco-2 monolayers for assessing permeability of polypeptide drugs.

Methods

The 3-day monolayers were grown in a commercially available transwell set-up, which facilitates rapid development of the Caco-2 monolayers in an intestinal epithelial differentiation mimicking environment. This set-up included use of serum-free medium of defined composition with supplements such as butyric acid, hormones, growth factors, and other metabolites, reported to regulate the differentiation of intestinal epithelial cells in vivo. We measured permeability of 3 different therapeutic polypeptides; insulin, calcitonin, and exenatide across the monolayer.

Results

Preliminary validation of the monolayer was carried out by confirming dose-dependent permeation of FITC-insulin and sulforhodamine-B. Transport of insulin, calcitonin, and exenatide measured at different loading concentrations suggests that the permeability values obtained with 3-day cultures resemble more closely the values obtained with ex vivo models compared to permeability values obtained with conventional 21-day cultures.

Conclusions

Short-term 3-day Caco-2 monolayers provide new opportunities for developing reproducible and high-throughput models for screening of therapeutic macromolecules for oral absorption.  相似文献   

4.
Zuo Z  Zhang L  Zhou L  Chang Q  Chow M 《Life sciences》2006,79(26):2455-2462
Our previous studies identified hyperoside (HP), isoquercitrin (IQ) and epicatechin (EC) to be the major active flavonoid components of the hawthorn phenolic extract from hawthorn fruits demonstrating inhibitory effect on in vitro Cu(+2)-mediated low density lipoproteins oxidation. Among these three hawthorn flavonoids, EC was the only one detectable in plasma after the oral administration of hawthorn phenolic extract to rats. The present study aims to investigate the intestinal absorption mechanisms of these three hawthorn flavonoids by in vitro Caco-2 monolayer model, rat in situ intestinal perfusion model and in vivo pharmacokinetics studies in rats. In addition, in order to investigate the effect of the co-occurring components in hawthorn phenolic extract on the intestinal absorption of these three major hawthorn flavonoids, intestinal absorption transport profiles of HP, IQ and EC in forms of individual pure compound, mixture of pure compounds and hawthorn phenolic extract were studied and compared. The observations from in vitro Caco-2 monolayer model and in situ intestinal perfusion model indicated that all three studied hawthorn flavonoids have quite limited permeabilities. EC and IQ demonstrated more extensive metabolism in the rat in situ intestinal perfusion model and in vivo study than in Caco-2 monolayer model. Moreover, results from the Caco-2 monolayer model, rat in situ intestinal perfusion model as well as the in vivo pharmacokinetics studies in rats consistently showed that the co-occurring components in hawthorn phenolic extract might not have significant effect on the intestinal absorption of the three major hawthorn flavonoids studied.  相似文献   

5.
本文详细介绍了Caco-2细胞系和MDCK细胞系的特点、跨膜转运细胞模型的建立及其影响因素,包括细胞模型的选择、细胞接种密度、细胞单层的紧密性等细胞因素和Transwell多微孔膜的性质等环境因素。概述了国内外关于利用Caco-2和MDCK细胞系作为模型进行药物筛选、药物相互作用和研究药物吸收转运机制等方面的内容及MDCK细胞模型作为肠道模型、肾脏模型及血脑屏障模型的应用。比较了Caco-2细胞和MDCK细胞在肠道模型方面的差别,MDCK细胞主要用于选择性研究药物在小肠吸收及转运机制,特别用于细胞旁被动转运药物的研究,而Caco-2细胞用于双向转运或能量依赖主动转运研究。MDCK细胞模型可在体外培养条件下平稳转染人类MDR1基因,因此可高表达P-gp基因,可作为可用于评估肾脏药物相互作用、快速进行候选药物筛选及研究药物转运机制的理想模型。  相似文献   

6.
Wheat CM2, CM3 and CM16 proteins are known as subunits of the tetrameric alpha-amylase inhibitor as well as major allergens to baker's asthma. The purpose of this study is to produce these CM proteins by bacteria in a quantity adequate for studying the penetration characteristics of the CM proteins through intestinal mucosa in rats and Caco-2 cells. cDNAs encoding the mature proteins were expressed in Escherichia coli and purified by an Ni2+-chelating column. The recombinant proteins were radioiodinated and admministered orally to rats or applied to the apical site of the Caco-2 cell monolayer. The radioactivity in the trichloroacetic acid-insoluble fraction, which was mainly composed of peptides with molecular mass less than that of the intact CM proteins, in the serum and the basolateral medium was highest in recombinant CM3. Accordingly, the intestinal absorption of these three proteins in the form present in wheat should be evaluated.  相似文献   

7.
The intestinal permeability to hesperidin glycosides was investigated by using a cultured monolayer of Caco-2 as a model for the small intestinal epithelium. Hesperidin glycosides were added to the apical side of the monolayer, and the substances that permeated to the basolateral side were determined by HPLC. Whereas hesperidin did not permeate across the Caco-2 monolayer, probably owing to its low solubility, the hesperidin glycosides did permeate. The transepithelial transport of hesperidin glycosides occurred in time- and dose-dependent manners. The transport was observed to be energy-independent, and was inversely correlated with the transepithelial electrical resistance (TEER) of the monolayer. These results suggest that hesperidin glycosides permeate across the Caco-2 cell monolayer via the paracellular pathway.  相似文献   

8.
Wheat CM2, CM3 and CM16 proteins are known as subunits of the tetrameric α-amylase inhibitor as well as major allergens to baker’s asthma. The purpose of this study is to produce these CM proteins by bacteria in a quantity adequate for studying thepenetration characteristics of the CM proteins through intestinal mcosa in rats and Caco-2 cells. cDNAs encoding the mature proteins were expressed in Escherichia coli and purified by an Ni2+-chelating column. The recombinant proteins were radioiodinated and admministrered orally to rats or applied to the apical site of the Caco-2 cell monolayer. The radioactivity in the trichloroacetic acid-insoluble fraction, which was mainly composed of peptides with molecular mass less than that of the intact CM proteins, in the serum and the basolateral medium was highest in recombinant CM3. Accordingly, the intestinal absorption of these three proteins in the form present in wheat should be evaluated.  相似文献   

9.
BackgroundThe aim of this work is to investigate the intestinal permeability of lamivudine and explore its absorption mechanism.MethodCaco-2 cells monolayer and single-pass intestinal perfusion (SPIP) were selected for the investigation of lamivudine under different conditions, such as different concentration, absorption time, bidirectional transportation, and transportation with efflux transporters inhibitor. The concentration of lamivudine both in Caco-2 cells monolayer samples and SPIP samples was detected by HPLC-UV. Then the permeability parameters were calculated.ResultsThe established HPLC-UV method reach the requirements for detection. There is no statistically difference between absorption parameters of lamivudine both in Caco-2 cells monolayer and SPIP (P > 0.05) under different dose groups. After transportation with efflux transporters inhibitor, the efflux rate of lamivudine in three dose groups was significantly decreased from 2.67, 2.59 and 2.59 to 1.78, 1.61, and 1.81 respectively. Lamivudine exhibits an absorption mechanism of passive diffusion.ConclusionThe absorption of lamivudine may be related to efflux transporters. In addition, lamivudine is a moderate-permeability drug in Biopharmaceutics Classification System.  相似文献   

10.
Myricitrin permeated the human intestinal Caco-2 cell monolayer via the paracellular pathway in a time- and concentration-dependent manner. Myricitrin was not conjugated by Caco-2 cells. Myricitrin was degraded by simulated intestinal digestion, but permeability did not change significantly.  相似文献   

11.
Bile pigments, including bilirubin and biliverdin are tetrapyrrolic, dicarboxylic acids capable of forming conjugates at their propionic acid groups via ester or amide bonds. They possess substantial antioxidant and anti-mutagenic activities and therefore their intestinal absorption might influence the development of cardiovascular disease and cancer. The aim of this study was to investigate whether altering the physico-chemical properties of bile pigments would improve their permeability in an in vitro assay of absorption. Native and synthetically modified bile pigments were tested for gastrointestinal permeability and metabolic stability using the Caco-2 cell line. In addition, a gross measure of their toxic effects was tested in a red blood cell co-incubation assay. The apparent permeability of unconjugated bilirubin (1), bilirubin ditaurate (2) and biliverdin (3) through Caco-2 cell monolayers was determined to be 10.4+/-1.2x10(-7), 35.2+/-3.4x10(-7) and 37.0+/-1.6x10(-7) cm/s (mean+/-SD), respectively, while biliverdin diglucosamine (4), and biliverdin dioctylamine (5) were impermeable. Unconjugated bilirubin, biliverdin, bilirubin ditaurate and biliverdin diglucosamine did not decompose when incubated in Caco-2 cell homogenates, whereas biliverdin dioctylamine decomposed over time. Only unconjugated bilirubin showed toxicity towards red blood cells (> or = 1000 microM), an effect that was abolished by the addition of 40 g/L serum albumin. The data presented here suggest that bile pigments are absorbed across the Caco-2 cell monolayer and that conjugation of biliverdin to hydrophilic or lipophilic moieties decreases their absorption and can reduce their metabolic stability. In summary, exogenous bilirubin and biliverdin supplements could be absorbed across the intestinal epithelium in vivo and potentially increase circulating concentrations of these antioxidant compounds.  相似文献   

12.
BackgroundColorectal adenocarcinoma cells (Caco-2) are a widely used model of intestinal barrier to study cancer development, toxicological assessments, absorption and metabolism in food science or drug discovery. Caco-2 spontaneously differentiate into a monolayer expressing several specific characteristics, typically showed by mature enterocytes. For in vitro experiments, it is crucial to identify non-invasive and non-destructive techniques able to evaluate the integrity and differentiation of the cells monolayer. Thus, we aimed to assess these properties by analyzing electrical impedance measurements.MethodsCaco-2 cells were differentiated for 21 days. The monolayer integrity and differentiation were primarily evaluated by means of morphological, biochemical and molecular data. Impedance measurements in a range of frequencies from 400 Hz to 50 kHz were performed using a dedicated set up, including customized Aerosol Jet Printed carbon-based sensors.ResultsThe trends of RI observed at three different frequencies were able to describe cell growth and differentiation. In order to evaluate which frequencies better correlate with cell differentiation, Principal Component Analysis have been employed and the concordance analysis between RI magnitude and morphological, biochemical and molecular data, highlighted 40 kHz as the optimal frequency to assess Caco-2 cells differentiation process.ConclusionWe demonstrated the feasibility and reliability of applying impedance-based measurements not only to provide information about the monolayer status, but also for cell differentiation monitoring.General significanceThis study underlined the possibility to use a dedicated sensor to assess the integrity and differentiation of Caco-2 monolayer, as a reliable non-destructive alternative to conventional approaches.  相似文献   

13.
A novel cell culture system was constructed to analyze the direct interaction between intestinal epithelial cells and immune cells. Human intestinal epithelial Caco-2 cells were monolayer-cultured on the under side of a permeable membrane (12 μm pore size) in a Millicell insert. Integrated monolayers of Caco-2 cells had formed after 12 days of culture. Human monocyte/macrophage-like THP-1 cells were then added to the upper chamber of the insert, and their migration into the Caco-2 cell monolayers was observed by confocal laser scanning microscopy, after staining the cells with specific antibodies. When MCP-1, a β-chemokine, was added to the apical side of the monolayer, a greater number of THP-1 cells migrated into the Caco-2 cell monolayers. This cell culture system will be useful for studying the behavior of macrophages in the intestinal epithelial cell monolayers at the initial stage of an intestinal immune reaction.  相似文献   

14.
Hypoallergenic wheat flour produced by modification with cellulase and actinase showed inhibitory activity against ovalbumin permeation in an in vitro model by using the Caco-2 cell monolayer. The activity was found in the cellulase preparation used for producing the flour. An active compound was isolated by HPLC and identified as Trp-Ser-Asn-Ser-Gly-Asn-Phe-Val-Gly-Gly-Lys by 1H-NMR data and Edman degradation. The undecapeptide, some oligopeptides with the N-terminal sequences and Trp ethyl ester showed activity at 10(-7) M, acetyl Trp being active at 10(-2) M. These data suggest that the Trp residue without a free carboxyl group would be required for the inhibitory activity of ovalbumin absorption through the intestinal tract.  相似文献   

15.
Some of the food-derived tripeptides with angiotensin converting enzyme (ACE)-inhibitory activity have been reported to be hypotensive after being orally administered. The mechanism for the intestinal transport of these tripeptides was studied by using monolayer-cultured human intestinal Caco-2 cells which express many enterocyte-like functions including the peptide transporter (PepT1)-mediated transport system. Val-Pro-Pro, an ACE-inhibitory peptide from fermented milk, was used as a model tripeptide. A significant amount of intact Val-Pro-Pro was transported across the Caco-2 cell monolayer. This transport was hardly inhibited by a competitive substrate for PepT1. Since no intact Val-Pro-Pro was detected in the cells, Val-Pro-Pro apically taken by Caco-2 cells via PepT1 was likely to have been quickly hydrolyzed by intracellular peptidases, producing free Val and Pro. These findings suggest that PepT1-mediated transport was not involved in the transepithelial transport of intact Val-Pro-Pro. Paracellular diffusion is suggested to have been the main mechanism for the transport of intact Val-Pro-Pro across the Caco-2 cell monolayer.  相似文献   

16.

Background

Amorphous silica particles with the primary dimensions of a few tens of nm, have been widely applied as additives in various fields including medicine and food. Especially, they have been widely applied in powders for making tablets and to coat tablets. However, their behavior and biological effects in the gastrointestinal tracts associated with oral administration remains unknown.

Methods

Amorphous silica particles with diameters of 50, 100, and 200 nm were incubated in the fasted-state and fed-state simulated gastric and intestinal fluids. The sizes, intracellular transport into Caco-2 cells (model cells for intestinal absorption), the Caco-2 monolayer membrane permeability, and the cytotoxicity against Caco-2 cells were then evaluated for the silica particles.

Results

Silica particles agglomerated in fed-state simultaneous intestinal fluids. The agglomeration and increased particles size inhibited the particles' absorption into the Caco-2 cells or particles' transport through the Caco-2 cells. The in vitro cytotoxicity of silica particles was not observed when the average size was larger than 100 nm, independent of the fluid and the concentration.

Conclusion

Our study indicated the effect of diet on the agglomeration of silica particles. The sizes of silica particles affected the particles' absorption into or transport through the Caco-2 cells, and cytotoxicity in vitro, depending on the various biological fluids.

General significance

The findings obtained from our study may offer valuable information to evaluate the behavior of silica particles in the gastrointestinal tracts or safety of medicines or foods containing these materials as additives.  相似文献   

17.
Glycerophospholipids are known to be hydrolyzed in the intestinal lumen into free fatty acids and lysophospholipids that are then absorbed by the intestinal epithelial cells. A monolayer of enterocyte-differentiated Caco-2 cell is often used to assess the intestinal bioavailability of nutrients. In this study, we examined how differentiated Caco-2 cells process lysoglycerolipids such as lysophosphatidylcholine (LPC). Our findings were twofold. (1) Caco-2 cells secreted both a lysophospholipase A-like enzyme and a glycerophosphocholine-phosphodiesterase enzyme into the apical, but not basolateral, lumen, suggesting that food-derived LPC is converted to a free fatty acid, sn-glycerol-3-phosphate, and choline through two sequential enzymatic reactions in humans. The release of the latter enzyme was differentiation-dependent. (2) Fatty acid-releasing activities toward exogenous fluorescent LPC, lysophosphatidic acid and monoacylglycerol were shown to be higher on the apical membranes of Caco-2 cells than on the basolateral membranes. These results suggest that human intestinal epithelial cells metabolize lysoglycerolipids by two distinct mechanisms involving secreted or apical-selective expression of metabolic enzymes.  相似文献   

18.
19.
The uptake and transepithelial transport of the three main constituents macrocarpal A (M-A), macrocarpal B (M-B), and cypellocarpa C (Cy-C) from the fruits of Eucalyptus globulus Labill. were investigated. Monolayers of the human intestinal epithelial cancer cell line Caco-2 were incubated with M-A, M-B, and Cy-C to model its intestinal absorption and transport, respectively. The determination of compounds was performed by HPLC. The apparent permeability coefficients (P(app)) for M-A, M-B, and Cy-C in the apical-to-basolateral direction of a Caco-2 monolayer were (1.70+/-0.06)x10(-6), (1.99+/-0.10)x10(-6), and (6.08+/-0.41)x10(-6)cm/s, respectively. In the presence of iodoacetamide, the P(app) of Cy-C were both reducted in apical-to-basolateral and basolateral-to-apical directions. M-A and M-B appear to accumulate in the epithelial cells. The intestinal absorption of M-A, M-B, and Cy-C was passive diffusion as the dominating process and Cy-C was partly ATP-dependent.  相似文献   

20.
The intestinal oligopeptide transporter (cloned as Pept-1) hasmajor roles in protein nutrition and drug therapy. A key unstudied question is whether expression of Pept-1 is hormonally regulated. Inthis experiment, we investigated whether insulin has such a role. Weused a human intestinal cell monolayer (Caco-2) as the in vitro modelof human small intestine and glycylglutamine (Gly-Gln) as the modelsubstrate for Pept-1. Results showed that addition of insulin at aphysiological concentration (5 nM) to incubation medium greatlystimulates Gly-Gln uptake by Caco-2 cells. This stimulation was blockedwhen genistein, an inhibitor of tyrosine kinase, was added toincubation medium. Studies of the mechanism of insulin stimulationshowed the following. 1) Stimulationoccurred promptly (30-60 min) after exposure to insulin.2) There was no significant changein the Michaelis-Menten constant of Gly-Gln transport, but there was anearly twofold increase in its maximal velocity.3) Insulin effect persisted evenwhen Golgi apparatus, which is involved in trafficking of newlysynthesized Pept-1, was dismantled.4) However, there was completeelimination of insulin effect by disruption of microtubules involved intrafficking of preformed Pept-1. 5)Finally, with insulin treatment, there was no change in Pept-1 geneexpression, but the amount of Pept-1 protein in the apical membrane wasincreased. In conclusion, the results show that insulin, when it bindsto its receptor, stimulates Gly-Gln uptake by Caco-2 cells byincreasing the membrane population of Pept-1. The mechanism appears tobe increased translocation of this transporter from a preformedcytoplasmic pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号