首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat germ agglutinin (WGA), a lectin that primarily reacts with N-acetylglucosamine residues, specifically inhibits the EDTA-stable type of intercellular adhesion of aggregation competent Dictyostelium discoideum cells. The major WGA-binding protein of these cells is a developmentally-regulated glycolipoprotein of 80 kd apparent mol. wt., designated as contact site A. This glycoprotein is a target site of antibody fragments that block the EDTA-stable cell adhesion, and is characterized by sulfated carbohydrate residues. WGA does not significantly bind to glycoproteins of a mutant, HL220, which produces a 68-kd component in place of the 80-kd glycoprotein. Inhibition of N-glycosylation by tunicamycin causes wild-type cells to produce a WGA-binding but unsulfated 66-kd component and a non-binding 53-kd component. These results indicate that the 80-kd glycoprotein contains two classes of carbohydrate residues, a WGA-binding one that is defective in HL220, and another, sulfated, one that is absent from the 66-kd wild-type product; both are missing in the 53-kd protein. WGA and a monoclonal antibody that is blocked by N-acetylglucosamine were further used to probe for glycoproteins in the multicellular slug stage that share carbohydrate structures - and possibly functions - with the contact site A glycoprotein. Glycoproteins in the 95-kd range have previously been implicated in cell-to-cell adhesion during the slug stage. We distinguished a 95-kd glycoprotein that binds WGA from another one that binds antibody.  相似文献   

2.
A series of monoclonal antibodies against a developmentally regulated protein of Dictyostelium discoideum, the contact site A glycoprotein, were used in immunoblots to label proteins of cells harvested at three stages of development: during the growth phase, at the aggregation competent stage, and at the slug stage. The antibodies fell into two groups according to their reactivity with partially or fully deglycosylated forms of the 80 kDa glycoprotein. Group A antibodies reacted not only with a 66 kDa, but also with a 53 kDa product of tunicamycin-treated wild-type cells, and they reacted with a 68 kDa component produced by HL220, a mutant that carries a specific defect in glycosylation. The 68 kDa product of the mutant was not completely unglycosylated. Like the 80 kDa glycoprotein of the wild type, which carried sulfate at carbohydrate residues, the mutant product was sulfated. In the presence of tunicamycin, the mutant produced a 53 kDa component indistinguishable from that of the wild type, which represents, most likely, the non-N-glycosylated protein portion of the contact site A glycoprotein. The group A antibodies showed almost no cross-reactivity with other proteins of the developmental stages tested, in accord with their postulated specificity for the protein moiety of the contact site A molecule. Group B antibodies did not react with the 53 kDa product of tunicamycin-treated cells, nor with the 68 kDa component of mutant HL220. These antibodies were of varying specificity. Some of them were almost as specific as group A antibodies, others cross-reacted with many proteins, particularly of the slug stage. Competition or non-competition between various group B antibodies for binding to the contact site A glycoprotein allowed sub-classification of these antibodies. According to two criteria, group B antibodies were characterized as anti-carbohydrate antibodies: (1) some of these antibodies were blocked by N-acetylglucosamine; (2) none of them reacted with the 68 kDa product or any other protein of mutant HL220. These results indicate that the 80 kDa glycoprotein carries two types of carbohydrate: type 1 carbohydrate that is sulfated and present on the 68 kDa product of mutant HL220, and type 2 carbohydrate that reacts with group B antibodies and is present on the 66 kDa product of tunicamycin-treated wild-type cells. Type 2 carbohydrate moieties are also present on many glycoproteins that are enriched in the prespore area of the slugs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Mutants of Dictyostelium discoideum were isolated and found to be defective in the epitope recognized by the monoclonal antibody 120 against the carbohydrate moieties of an integral membrane glycoprotein, contact site A, with the apparent molecular mass of 80 x 10(3). One mutant, HG764, did not express any contact site A and had lost cell contact resistant to EDTA. The others, including HG794, expressed a 68-kDa form of contact site A. In comparison with the parental strain HG592, HG794 showed weaker EDTA-resistant cell contact and the same degree of EDTA-sensitive cell contact. This suggested that the moieties which HG794 lacked were involved in EDTA-resistant cell contact. The 68-kDa contact site A in HG794 could be labeled with wheat germ agglutinin and incorporated [35S] sulfate. The modB mutant HL220 also expresses 68-kDa contact site A, although it cannot be labeled with wheat germ agglutinin. Therefore, the mutants HG794 and HL220 were compared by a complementation test. The diploid strain DG701 expressed 80-kDa contact site A and showed the same degree of EDTA-resistant cell contact as strain HG592. In its EDTA-resistant cell contact, HG794 was stronger than HL220. These results suggest that HG794 is a new mutant, and that there might be at least two processes in the glycosylation of 68-kDa contact site A to the 80-kDa form. The carbohydrate moieties recognized by monoclonal antibody 120 and by wheat germ agglutinin might be involved in EDTA-resistant cell contact.  相似文献   

4.
An 80-kDa glycoprotein of Dictyostelium discoideum, designated contact site A, has been implicated in EDTA-stable cell adhesion. This protein is known to be the major sulfated protein of aggregation-competent cells and has been shown to contain two types of carbohydrate, sulfated type 1 and unsulfated type 2 carbohydrate moieties. Here we investigate the cell-free sulfation of this protein. In the homogenate of developing cells, [35S]sulfate was transferred by endogenous sulfotransferase from [35S]3'-phosphoadenosine-5'-phosphosulfate to the contact site A glycoprotein and to various other endogenous proteins. The sulfate was transferred to carbohydrate rather than to tyrosine residues. After differential centrifugation of the homogenate, the capacity for sulfation of the contact site A glycoprotein was barely detected in the plasma membrane-enriched 10,000 X g pellet fraction which contained the bulk of this glycoprotein, but was largely recovered in the 100,000 X g pellet fraction which contained only a small portion of this glycoprotein. After sucrose gradient centrifugation, the membranes containing the sulfation capacity were found to have a density characteristic for Golgi membranes. In immunoblots, monoclonal antibodies raised against the contact site A glycoprotein recognized not only this 80-kDa protein, but also a sulfatable 68-kDa protein found in the 100,000 X g pellet fraction. The 68-kDa protein did not react with monoclonal antibodies against type 2 carbohydrate but was converted by endoglycosidases F and H into a 53-kDa protein, indicating that it was a partially glycosylated form of the 80-kDa glycoprotein containing only type 1 carbohydrate. Isoelectric focusing showed that a substantial portion of the 68-kDa glycoprotein was unsulfated, even after cell-free sulfation. The 68-kDa glycoprotein was not found in the plasma membrane-enriched 10,000 X g pellet fraction and did not accumulate in parallel with the 80-kDa contact site A glycoprotein during cell development. We conclude that the 68-kDa glycoprotein is a precursor that is converted by attachment of type 2 carbohydrate and sulfation of type 1 carbohydrate into the mature 80-kDa glycoprotein. The precursor nature of the 68-kDa glycoprotein was supported by results obtained with mutant HL220 which is defective in glycosylation (Murray, B. A., Wheeler, S., Jongens, T., and Loomis, W. F. (1984) Mol. Cell. Biol. 4, 514-519). This mutant specifically lacks type 2 carbohydrate and produces a 68-Kda glycoprotein instead of the 80-kDa contact site A glycoprotein (Yoshida, M., Stadler, J., Bertholdt, G., and Gerisch, G. (1984) EMBO J. 3, 2663-2670).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
J Faix  G Gerisch    A A Noegel 《The EMBO journal》1990,9(9):2709-2716
The contact site A (csA) glycoprotein is a developmentally regulated cell adhesion molecule which mediates EDTA-stable cell contacts during the aggregation stage of Dictyostelium discoideum. A transformation vector was constructed which allows overexpression of the csA protein during the growth phase. In that stage the csA protein is normally not expressed; in the transformants it was transported to the cell surface and carried all modifications investigated, including a phospholipid anchor and two types of oligosaccharide chain. csA expression enabled the normal non-aggregative growth-phase cells to form EDTA-stable contacts in suspension and to assemble into three-dimensional aggregates when moving on a substratum. After prolonged cultivation of csA overexpressing transformants in nutrient medium the developmental program was found to be turned on, as it normally occurs only in starving cells. During later development of transformed cells, the csA glycoprotein remained present on the cell surface, while it is down-regulated in the wild type. It was detected in both the prestalk and prespore regions of the multicellular slugs made from transformed cells.  相似文献   

6.
The envelope (Env) glycoprotein of human immunodeficiency virus (HIV) contains 24 N-glycosylation sites covering much of the protein surface. It has been proposed that one role of these carbohydrates is to form a shield that protects the virus from immune recognition. Strong evidence for such a role for glycosylation has been reported for simian immunodeficiency virus (SIV) mutants lacking glycans in the V1 region of Env (J. N. Reitter, R. E. Means, and R. C. Desrosiers, Nat. Med. 4:679-684, 1998). Here we used recombinant vesicular stomatitis viruses (VSVs) expressing HIV Env glycosylation mutants to determine if removal of carbohydrates in the V1 and V2 domains affected protein function and the generation of neutralizing antibodies in mice. Mutations that eliminated one to six of the sites for N-linked glycosylation in the V1 and V2 loops were introduced into a gene encoding the HIV type 1 primary isolate 89.6 envelope glycoprotein with its cytoplasmic domain replaced by that of the VSV G glycoprotein. The membrane fusion activities of the mutant proteins were studied in a syncytium induction assay. The transport and processing of the mutant proteins were studied with recombinant VSVs expressing mutant Env G proteins. We found that HIV Env V1 and V2 glycosylation mutants were no better than wild-type envelope at inducing antibodies neutralizing wild-type Env, although an Env mutant lacking glycans appeared somewhat more sensitive to neutralization by antibodies raised to mutant or wild-type Env. These results indicate significant differences between SIV and HIV with regard to the roles of glycans in the V1 and V2 domains.  相似文献   

7.
Retinoid transport is well characterized in many vertebrates, while it is still largely unexplored in fish. To study the transport and utilization of vitamin A in these organisms, we have isolated from a carp liver cDNA library retinol-binding protein, its plasma carrier. The primary structure of carp retinol-binding protein is very conserved, but presents unique features compared to those of the correspondent proteins isolated and characterized so far in other species: it has an uncleavable signal peptide and two N-glycosylation sites in the NH(2)-terminal region of the protein that are glycosylated in vivo. In this paper, we have investigated the function of the carbohydrate chains, by constructing three mutants deprived of the first, the second or both carbohydrates. The results of transient transfection of wild type and mutant retinol-binding protein in Cos cells followed by Western blotting and immunofluorescence analysis have shown that the absence of both carbohydrate moieties blocks secretion, while the presence of one carbohydrate group leads to an inefficient secretion. Experiments of carp RBP mRNA in vitro translation in a reticulocyte cell-free system in the presence of microsomes have demonstrated that N-glycosylation is necessary for efficient translocation across the endoplasmic reticulum membranes. Moreover, when Cos cells were transiently transfected with wild type and mutant retinol-binding protein (aa 1-67)-green fluorescent protein fusion constructs and semi-permeabilized with streptolysin O, immunofluorescence analysis with anti-green fluorescent protein antibody revealed that the double mutant is exposed to the cytosol, thus confirming the importance of glycan moieties in the translocation process.  相似文献   

8.
Two different types of oligosaccharides, designated type 1 and 2 carbohydrate residues, are present on the contact site A molecule, an 80-kDa glycoprotein involved in the formation of EDTA-stable cell adhesion during cell aggregation in Dictyostelium discoideum. The first precursor detected by pulse-chase labeling with [35S]methionine was a 68-kDa glycoprotein carrying type 1 carbohydrate. Conversion of the precursor into the 80-kDa form occurred simultaneously with the addition of type 2 carbohydrate. Tunicamycin inhibited type 1 glycosylation more efficiently than type 2 glycosylation. The first precursor detected in tunicamycin-treated cells by pulse-chase labeling was a 53-kDa protein lacking both carbohydrates, which was converted through addition of type 2 carbohydrate into a 66-kDa final product. Labeling of intact cells indicated that this 66-kDa glycoprotein is transported to the cell surface. Prolonged treatment with tunicamycin resulted in the accumulation within the cells of the 53-kDa precursor with no detectable exposure of this protein on the cell surface. It is concluded that type 1 carbohydrate, which is cotranslationally added in N-glycosidic linkages, is neither required for transport of the protein to the Golgi apparatus nor for type 2 glycosylation or protection of the protein against proteolytic degradation. Incapability of tunicamycin-treated cells of forming EDTA-stable cell contacts suggests a role for type 1 carbohydrate in cell adhesion. Type 2 carbohydrate is added posttranslationally. It is required in the absence of type 1 glycosylation for transport of the protein to the cell surface.  相似文献   

9.
10.
1. The relationship between glycosylation of contact site A (csA) of 80 kDa with two types of N-linked carbohydrates, I and II, and EDTA-resistant cell contact of Dictyostelium was investigated by tunicamycin treatment. 2. Carbohydrate I glycosylation, involved in a shift of csA from 66 to 80 kDa, was more sensitive to tunicamycin than carbohydrate II glycosylation in its shift from 53 to 66 kDa. 3. The appearance of csA of 80 kDa corresponded to that of EDTA-resistant cell contact. Carbohydrate I may be essential for EDTA-resistant cell contact. 4. In starved cells treated with tunicamycin, only 4-8% of moieties labeled with wheat germ agglutinin in carbohydrate II were modified.  相似文献   

11.
The NAD(P)H-nitrate reductase complex (overall-NR) of Chlamydomonas reinhardii exhibits two partial activities: NAD(P)H-cytochrome c reductase (diaphorase) and reduced benzyl viologen-NR (terminal-NR). Mild tryptic digestion of the enzyme complex resulted in the loss of both overall and terminal-NR activities, whereas diaphorase activity remained unaltered. The diaphorase activity of mutant 104 and the terminal-NR activity of mutant 305 of C. reinhardii, which are the sole activities related to NR present in these mutants, responded to tryptic treatment to the same extent as the corresponding activities of the wild enzyme complex. Trypsin disassembled the 220-kd NR native complex by destroying the aggregation capability of the diaphorase subunits without affecting their activity nor molecular size (45 kd). A 67-kd thermostable protein, containing molybdenum co-factor, was also released from trypsin-treated NR. This protein lacked diaphorase and NR activities but was able to reconstitute the overall-NR complex by complementation with untreated diaphorase subunit of mutant 104. Our results support a tetrameric structure for the C. reinhardii NR complex, containing two kinds of subunits.  相似文献   

12.
We have investigated how truncation of the cytoplasmic domain of the transmembrane (TM) glycoprotein of simian immunodeficiency virus (SIV) modulates the host range of this virus. Termination codons were introduced into the env gene of SIVmac239 which resulted in the truncation of the transmembrane protein from a wild-type 354 amino acids (TM354) to 207 (TM207) and 193 (TM193) amino acids. Expression of the wild-type and mutant env genes from a simian virus 40-based vector resulted in normal biosynthesis and processing of the glycoproteins to gp130 and gp41 or the truncated TM proteins (gp28 and gp27). When expressed on the surface of COS-1 cells, all three glycoproteins mediated fusion of both CEMX174 and HUT78 cells. Virions containing the wild-type and mutant glycoproteins were capable of efficient replication in macaque peripheral blood lymphocytes and CEMX174 cells; in contrast, only virions that contained TM207 were capable of rapid infection of HUT78 cells. Both truncated glycoproteins were capable of efficiently mediating infection of both CEMX174 and HUT78 cells by an env-deficient human immunodeficiency virus. The wild-type SIV glycoprotein, however, was unable to mediate human immunodeficiency virus infection of HUT78 cells when assayed with this system. An analysis of the protein composition of SIV released from infected CEMX174 cells showed that the mutant virions contained significantly higher levels of glycoprotein compared with the wild type. These results demonstrate that truncation of the SIV cytoplasmic domain removes a block at the level of glycoprotein-mediated virus entry into HUT78 cells and points to a role for glycoprotein density in determining virus tropism.  相似文献   

13.
The contact site A (csA) glycoprotein of Dictyostelium discoideum, a cell adhesion molecule expressed in aggregating cells, is inserted into the plasma membrane by a ceramide-based phospholipid (PL) anchor. A carboxyterminal sequence of 25 amino acids of the primary csA translation product proved to contain the signal required for PL modification. CsA is known to be responsible for rapid, EDTA-resistant cohesion of cells in agitated suspensions. To investigate the role of the PL modification of this protein, the anchor was replaced by the transmembrane region and short cytoplasmic tail of another plasma membrane protein of D. discoideum. In cells transformed with appropriate vectors, PL-anchored or transmembrane csA was expressed under the control of an actin promoter during growth and development. The transmembrane form enabled the cells to agglutinate in the presence of shear forces, similar to the PL-anchored wild-type form. However, the transmembrane form was much more rapidly internalized and degraded. In comparison to other cell-surface glycoproteins of D. discoideum the internalization rate of the PL-anchored csA was extremely slow, most likely because of its exclusion from the clathrin-mediated pathway of pinocytosis. Thus, our results indicate that the phospholipid modification is not essential for the csA-mediated fast type of cell adhesion but guarantees long persistence of the protein on the cell surface.  相似文献   

14.
Virions from Newcastle disease virus mutants in four temperature-sensitive RNA+ groups were grown in embryonated hen eggs at the permissive temperature, purified, and then analyzed for biological properties at both the permissive and nonpermissive temperatures. At the permissive temperature, virions of mutants in groups B, C, and BC (11 mutants) were all lower in specific (per milligram of protein) hemagglutination, neuraminidase, and hemolysis activities compared with the wild type. These deficiencies were related to decreased amounts of hemagglutinin-neuraminidase glycoprotein in the virions. Activities of these mutant virions at both the permissive and nonpermissive temperatures were similar, indicating that hemagglutinin-neuraminidase synthesized at the permissive temperature was not temperature sensitive in function. The three group D mutants displayed a different pattern. At the permissive temperature, they had wild-type hemagglutination and neuraminidase activities but were deficient compared with the wild type in hemolysis. Again, functions were similar at both temperatures. Most of the B, C, and BC mutants had specific infectivities similar to that of the wild type despite lower hemagglutination, neuraminidase, and hemolysis functions. However, the D mutants were all less infectious. This evidence is consistent with a shared hemagglutinin-neuraminidase defect in the B, C, and BC mutants and a defect in either the F glycoprotein or the M protein in the D mutants.  相似文献   

15.
We used two approaches to determine whether the mucopolysaccharide chondroitin sulfate is an important source of carbon and energy for Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. First, we tested the ability of three mutants that grew poorly or not at all on chondroitin sulfate to colonize the intestinal tract of a germfree mouse and to compete with wild-type B. thetaiotaomicron in this model system. One mutant (CG10) was rapidly outcompeted by the wild type. However, since this mutant was unable to grow on chondroitin sulfate because it could not grow on N-acetyl-galactosamine, one of its monosaccharide components, this mutant might also be unable to utilize glycoprotein mucins. Two mutants (46-1 and 46-4) were isolated that grew poorly on chondroitin sulfate but normally on both component sugars. One of them was outcompeted by the wild type, but the percent wild type increased more slowly than with CG10. In one experiment, the percent wild type never reached 100%. The other (46-4) was not outcompeted by the wild type. These results indicate that, although chondroitin sulfate may be a carbon source in the animal, it is not of major importance. Our second approach was to determine by immunoblot analysis whether a 28-kilodalton outer membrane protein that is produced by B. thetaiotaomicron only when it is grown on chondroitin sulfate or hyaluronic acid was being produced at induced level by B. thetaiotaomicron growing in the ceca of exgermfree mice. There was no evidence for induction of this protein in vivo. Thus, the immunoblot results are consistent with results of the mutant competition experiments.  相似文献   

16.
The p62/E2 protein of Semliki Forest virus (SFV) is a typical transmembrane glycoprotein, with an amino-terminal lumenal domain, a transmembrane (hydrophobic) domain, and a carboxy-terminal cytoplasmic domain (or tail). Our hypothesis has been that the membrane-binding polypeptide region (membrane anchor) of this protein consists of both the transmembrane domain and the adjacent positively charged peptide, Arg-Ser-Lys, which is part of the cytoplasmic domain. We have investigated three anchor mutants of the p62 protein with respect to both their disposition and their stability in cell membranes. The construction of the three mutants has been described (Cutler, D.F., and H. Garoff, J. Cell Biol., 102:889-901). They are as follows: A1, changing the basic charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Glu(-1); A2, replacing an Ala in the middle of the hydrophobic stretch with a Glu; A3, changing the charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Met(0). All three mutants retain the transmembrane configuration of the wild-type p62. In a cell homogenate they have a cytoplasmic domain that is accessible to protease. In living cells an anti-peptide antibody specific for the cytoplasmic tail of p62 reacts with the tails of both wild-type and mutant p62s following its introduction into the cytoplasm. All three mutant proteins have Triton X-114 binding properties similar to the wild-type p62. However, when the membranes of cells expressing the three mutants or the wild-type p62 protein are washed with sodium carbonate, pH 11.5, three to four times as much mutant protein as wild-type p62 is released from the membranes. Thus the stability in cell membranes of the three mutant p62 proteins is significantly reduced.  相似文献   

17.
18.
Leaf growth dynamics are driven by diel rhythms. The analysis of spatio-temporal leaf growth patterns in Arabidopsis thaliana wild type and mutants of interest is a promising approach to elucidate molecular mechanisms controlling growth. The diel availability of carbohydrates is thought to affect diel growth. A digital image sequence processing (DISP)-based noninvasive technique for visualizing and quantifying highly resolved spatio-temporal leaf growth was adapted for the model plant A. thaliana. Diel growth patterns were analysed for the wild type and for a mutant with altered diel carbohydrate metabolism. A. thaliana leaves showed highest relative growth rates (RGRs) at dawn and lowest RGRs at the beginning of the night. Along the lamina, a clear basipetal gradient of growth rate distribution was found, similar to that in many other dicotyledonous species. The starch-free 1 (stf1) mutant revealed changed temporal growth patterns with reduced nocturnal, and increased afternoon, growth activity. The established DISP technique is presented as a valuable tool to detect altered temporal growth patterns in A. thaliana mutants. Endogenous changes in the diel carbohydrate availability of the starch-free mutant clearly affected its diel growth rhythms.  相似文献   

19.
In the Arabidopsis mutant sdd1-1, a point mutation in a single gene (SDD1) causes specific alterations in stomatal density and distribution. In comparison to the wild type (C24), abaxial surfaces of sdd1-1 rosette leaves have about 2.5-fold higher stomatal densities. This mutant was used to study the consequence of stomatal density on photosynthesis under various light regimes. The increased stomatal density in the mutant had no significant influence on the leaf CO(2) assimilation rate (A) under constant light conditions. Mutant and wild-type plants contained similar amounts of carbohydrates under these conditions. However, exposure of plants to increasing photon flux densities resulted in differences in gas exchange and the carbohydrate metabolism of the wild type and mutant. Increased stomatal densities in sdd1-1 enabled low-light-adapted plants to have 30% higher CO(2) assimilation rates compared to the wild type when exposed to high light intensities. After 2 d under high light conditions leaves of sdd1-1 accumulated 30% higher levels of starch and hexoses than wild-type plants.  相似文献   

20.
The Gram-negative bacterium Variovorax paradoxus strain B4 was isolated from soil under mesophilic and aerobic conditions to elucidate the so far unknown catabolism of mercaptosuccinate (MS). During growth with MS this strain released significant amounts of sulfate into the medium. Tn5::mob-induced mutagenesis was successfully employed and yielded nine independent mutants incapable of using MS as a carbon source. In six of these mutants, Tn5::mob insertions were mapped in a putative gene encoding a molybdenum (Mo) cofactor biosynthesis protein (moeA). In two further mutants the Tn5::mob insertion was mapped in the gene coding for a putative molybdopterin (MPT) oxidoreductase. In contrast to the wild type, these eight mutants also showed no growth on taurine. In another mutant a gene putatively encoding a 3-hydroxyacyl-coenzyme A dehydrogenase (paaH2) was disrupted by transposon insertion. Upon subcellular fractionation of wild-type cells cultivated with MS as sole carbon and sulfur source, MPT oxidoreductase activity was detected in only the cytoplasmic fraction. Cells grown with succinate, taurine, or gluconate as a sole carbon source exhibited no activity or much lower activity. MPT oxidoreductase activity in the cytoplasmic fraction of the Tn5::mob-induced mutant Icr6 was 3-fold lower in comparison to the wild type. Therefore, a new pathway for MS catabolism in V. paradoxus strain B4 is proposed: (i) MPT oxidoreductase catalyzes the conversion of MS first into sulfinosuccinate (a putative organo-sulfur compound composed of succinate and a sulfino group) and then into sulfosuccinate by successive transfer of oxygen atoms, (ii) sulfosuccinate is cleaved into oxaloacetate and sulfite, and (iii) sulfite is oxidized to sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号